Flow structure visualization in the reverse-flow vortex tube


Аuthors

Piralishvili S. A., Veretennikov S. V., Tryapina V. A.

Rybinsk State Aviation Technical University named after P.A. Soloviev, RSATU, 53, Pushkin St., Rybinsk, Yaroslavl region, 152934, Russia

Abstract

The reverse-flow swirling currents are widely applied to intensify the processes of heat and mass transfer, as well as for the various types of fuel combustion. The temperature stratification realization, i.e. ener gy separation effect, in such flows allows further efficiency increasing of vortex devices. As of today, there is no generally accepted physico-mathematical model, describing phenomena occurring in the vortex tube. It is stipulated mainly by complexity of the reverse-flow gas flowing structure in the energy separation chamber, which apprehension may be of significant help for the vortex effect theory development. The article considered flow specifics in the reverse-flow vortex tube revealed as the result of air and water flow visualization while varying operating conditions. The vortex helical structures are being formed in the zone of near-axis and peripheral flows and can pulsate for the account of the gyroscopic mechanism.

Keywords:

swirling flow, vortex effect, energy separation, Ranque-Hilsch vortex tube

References

  1. Piralishvili S.A. Vihrevoj effekt (Fizicheskoe yavlenie, eksperiment, teoreticheskoe modelirovanie) [Vortex effect. Physical phenomenon, experiment, theoretical modeling]. Moscow: Nauchtehlitizdat, 2012, 342 p.

  2. Merkulov A.A. Vihrevoj effekt i ego primenenie v tekhnike [Vortex effect and its application in engineering]. Moscow: Mashinostroenie, 1969, 177 p.

  3. Suslov A.D., Ivanov S.V., Murashkin A.V. Vihrevye apparaty [Vortex apparatuses]. Moscow: Mashinostroenie, 1985, 251 p.

  4. Zhang B., Guo X. Prospective applications of Ranque – Hilsch vortex tubes to sustainable energy utilization and energy efficiency improvement with energy and mass separation. Renewable and Sustainable Energy Reviews, 2018, vol. 89. pp. 135–150.

  5. Santos E.D.D., Marques C.H., Stanescu G., Isoldi L.A., Rocha L.A.O. Constructal Design of Vortex Tubes. Constructal Law and the Unifying Principle of Design. Ed. by L.A.O. Rocha, S. Lorente, A. Bejan. New York: Springer New York, 2013, pp. 259–273.

  6. Vasilyuk O.V., Veretennikov S.V. Simulation of vortex expansion separator for steam. AIP Conference Proceedings. American Institute of Physics, 2020, vol. 2211, no. 1, article number 060007.

  7. Xue Y., Arjomandi M., Kelso R. A critical review of temperature separation in a vortex tube. Experimental Thermal and Fluid Science, 2010, vol. 34, no. 8, pp. 1367–1374.

  8. Gutak A.D. Experimental investigation and industrial application of Ranque-Hilsch vortex tube. International Journal of Refrigeration, 2015, vol. 49, pp. 93–98.

  9. Guo X., Zhang B., Liu B., Xu X. A critical review on the flow structure studies of Ranque – Hilsch vortex tubes. International Journal of Refrigeration, 2019, vol. 104, pp. 51–64.

  10. Ahlborn B., Groves S. Secondary flow in a vortex tube. Fluid Dynamics Research, 1997, vol. 21, no. 2, pp. 73–86.

  11. Erdélyi I. Wirkung des Zentrifugalkraftfeldes auf den Wärmezustand der Gase, Erklärung der Ranque-Erscheinung. Forschung auf dem Gebiet des Ingenieurwesens, 1962, vol. 28, no. 6, pp. 181–186.

  12. Liew R., Zeegers J.C.H., Kuerten J., Michalek W.R. Maxwell’s Demon in the Ranque-Hilsch Vortex Tube. Physical Review Letters, 2012, vol. 109, no. 5, article number 054503.

  13. Eiamsaard S., Promvonge P. Review of Ranque – Hilsch effects in vortex tubes. Renewable and Sustainable Energy Reviews, 2008, vol. 12, no. 7, pp. 1822–1842.

  14. Deissler R.G., Perlmutter M. Analysis of the flow and energy separation in a turbulent vortex. International Journal of Heat and Mass Transfer, 1960, vol. 1, no. 2–3, pp. 173–191.

  15. Xue Y., Arjomandi M., Kelso R. Visualization of the flow structure in a vortex tube. Experimental Thermal and Fluid Science, 2011, vol. 35, no. 8, pp. 1514–1521.

  16. Arbuzov V.A., Dubnishchev Yu.N., Lebedev A.V., Pravdina M.Kh., Yavorski N.I. Observation of large-scale hydrodynamic structures in a vortex tube and the Ranque effect. Technical Physics Letters, 1997, vol. 23, no. 12, pp. 938–940.

  17. Aydin O., Baki M. An experimental study on the design parameters of a counterflow vortex tube. Energy, 2006, vol. 31, no. 14, pp. 2763–2772.

  18. Gordienko M.R., Yavorsky N.I., Pravdina M.Kh., Kakau lin S.V., Kabardin I.K. Visualization in the Ranque-Hilsch vortex tube using high-speed video recording. Journal of Physics Conference Series, 2021, vol. 2119, no. 1, article number 012104.

  19. Guo X., Zhang B., Li L., Liu B., Fu T. Experimental investigation of flow structure and energy separation of Ranque — Hilsch vortex tube with LDV measurement. International Journal of Refrigeration, 2019, vol. 101, pp. 106–116.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI