On modeling of thermal disturbances introduced into a rarefied plasma by motionless canonical bodies


Аuthors

Cherepanov V. V.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: vvcherepanov@yandex.ru

Abstract

The article presents the mathematical model describing the process of self-consistent relaxation of the region of disturbances being introduced into a free-molecular binary ionized gas by the charged body with surface absorbing the gas particles, which has the spherical or cylinder shape having become canonical in thermal computational problems. The model allows describing and analyzing the thermal field in the vicinity of the body, and thermal loads on its surface. These problems specifics consist in their kinetic description, in which separation of the heat and mass exchange processes from the electromagnetic field description is impossible. Optimal curvilinear non-holonomic coordinate system, minimizing the phase space, in which Vlasov’s kinetic equation form was substantiated, was selected for the problem.

Keywords:

heat and mass transfer, rarefied plasma, canonical bodies, kinetic description, phase space, non- holonomic coordinates, perturbation region, relaxation, self-consistent problem

References

  1. Artsimovich A.A., Sagdeev R.Z. Fizika plasmy dlya fizikov [Plasma physics for physicists]. Moscow: Atomizdat, 1979, 320 p. (In Russ.)
  2. Chapman S., Cowling T.G. Matematicheskaya teoriya neodnorodnykh gazov [The mathematical theory or non-uniform gases]. Izdatel’stvo “Inostrannaya literature”, 1970, 512 p. (In Russ.)

  3. Klimontovich Yu.L. KIneticheskaya teoriya electromagnitnykh processov. [Kinetic theory of electromagnetic processes]. Мoscow: Nauka, 1980, 374 p. (In Russ.)

  4. Bird G.A. Molekulyarnaya gazovaya dinamika [Molecular gas dynamics]. Moscow: Mir, 1981, 320 p. (In Russ.)

  5. Vlasov A.A. Statisticheskie functcii raspredeleniya [Statistical distribution functions]. Moscow: Nauka, 1966, 356 p. (In Russ.)

  6. Alekseev B.V. Matematicheskaya kinetika reagiruyushchikh gazov [Acute problems of theoretical physics]. Moscow: Nauka, 1982, 424 p. (In Russ.)

  7. Alpert Ya.L., Gurevich A.V., Pitaevsky L.P. Iscusstvennye sputniki v razrejennoi plazme [Artificial satellites in rarefied plasma]. Moscow: Nauka, 1964. 384 p. (In Russ.)

  8. Mathews J., Walker R.L. Matematicheskie metody fiziki [Mathematical methods of physics]. Moscow: Atomizdat, 1972, 400 p.

  9. Alekseev B.V., Kotelnikov V.A., Novikov V.N. Nestatcionarnyi zond Lengmjura [Nonstationary Langmuir’s Probe]. High Temperature, 1980, vol. 18, no. 5, pp. 1062–1065. (In Russ.)

  10. Alifanov O.M., Cherepanov V.V. Metodi issledovaniya i prognosirovaniya svoystv vysokoporistykh teplozhaschytnykh materialov [Methods for studying and predicting the properties of highly porous heat-protective materials]. Moscow: Moscow Aviation Institute, 2014, 264 p. (In Russ.)

  11. Godunov S.K., Ryabenkiy V.S. Raznostnye skhemy. Vvedeniye v teoriyu. [Difference schemes. Introduction to theory]. Moscow: Nauka, 1977, 440 p. (In Russ.)

  12. Kuznetsov I.A., Saveliev A.A., Rasipuram S., Kuznetsov A.V., Broun A., Jasper W. Development of active porous medium filters on plasma textiles . AIP Conference Proceedings, 2012, vol. 1453, iss. 1, pp. 265–270. URL: https://doi.org/10.1063/1.4711186

  13. Lev D., Myers R.M., Lemmer K.M., Kolbeck J., Koizumi H., Polzin K. The technological and commercial expansion of electric propulsion. Acta Astronautica, 2019, vol. 159, pp. 213–227.

  14. Ohkawa Y. Review of KITE – Electrodynamic tender experiment on the Japanese H-II Transfer Vehicle. Acta Astronautica, 2020, vol. 177, pp. 750–758. URL: https://doi.org/10.1016/jactaastro.2020.03.04

  15. Sanmartin J.R., Estes R.D. The orbital-motion-limited regime of cylindrigal Langmuir probes. Physics of Plasmas, 1999, vol. 6, no. 1, pp. 395-405.

  16. Thissen H. Plasma-based surface modification for the control of biointerfacial interactions. Biosynthetic Polymers for Medical Applications. A volume in Woodhead Publishing Series in Biomaterials. Ed by L. Poole-Warren, P. Martens, R. Green. Elsevier Science Direct, 2016. P. 129-144. URL: https://doi.org/10.1016/C2013-0-16462-8

  17. Giddey S., Badwal S.P.S., Kulkarni A., Munnings C. A comprehensive review of direct carbon fuel cell technology. Progress in Energy and Combustion Science, 2012, vol. 38, no. 3, pp. 360–399. URL: https://doi.org/10.1016/j.pecs.2012.01.003

  18. Gay-Mimbrera J., Garcia M.C., Isla-Tejera B., Rodero–Serrano A., Garcia–Nieto A.V., Ruano J. Clinical and Biological Principles of Cold Atmospheric Plasma Application in Skin Cancer. Advanced in Therapy, 2016, vol. 33, no. 6, pp. 894–909. URL: https://doi.org/10.1007/s12325-016-0338-1

  19. Freidman P.C., Fridman A. Using cold plasma to treat warts in children. Pediatric Dermatology, 2020, vol. 37, no. 4, pp. 706–709. URL: https://doi.org/10.1111/pde.14180

  20. Chung S.S.M. FDTD Simulations on radar cross section of metal cone and plasma covered metal cone. Vacuum, 2012, vol. 86, iss. 7, pp. 970–984. URL: https://doi.org/10.1016/ j.vacuum.2011.08.016

  21. Morfill G.E., Ivlev A.V. Complex. plasmas: An interdisciplinary research field. Reviews of Modern Physics, 2009, vol. 81. no. 4, article number 1353.

  22. Merlino R.L. Experimental Investigations of Dusty Plasmas. AIP Conference Proceedings, 2005, vol. 799, iss. 1, pp. 3–11. URL: https://doi.org/10.1063/1.2134567

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI