Experimental study of the droplets’ movement under the Leidenfrost effect on highly overheated metal strings


Аuthors

*, Dmitriev A. S., Artamonov A. V., Drozdov A. P.

Moscow Power Engineering Institute (National Research University), 14, Krasnokazarmennaja St., Moscow, 111250, Russia

*e-mail: MakarovPG@mpei.ru

Abstract

The article is dedicated to the behavior of water droplets placed between two parallel heated metal strings, the distance between which is comparable to the linear size of the drop. Strings are heated by the Joule heating effect to temperatures exceeding critical temperatures of nucleate and film boiling – 100 and 220–250 °C, respectively. Various configurations of side surface of strings were tested: smooth and with winding (intermittent and continuous). Experiments have shown that these types of surfaces do not cause rapid boiling of droplets or its falling. Behavior of droplets in such systems can be described as levitating: either stationary or with directional movement, depending on surface structure and/or temperature. Numerous experiments have shown that this phenomenon is very similar to the Leidenfrost effect on a flat overheated surface.

Keywords:

Leidenfrost effect, thin strings, surface morphology, levitation mechanism, vaporous layer

References

  1. Kutateladze S.S., Nakoryakov V.E. Teplomassoobmen i volny v gazozhidkostnykh systemakh. Novosibirsk: Izdatelstvo “Nauka”, 1984, 303 p.

  2. Liu X., Zou Q., Yang R. Theoretical analysis of bubble nucleation in liquid film boiling. International Journal of Heat and Mass Transfer, 2022, no. 192, article number 122911. URL: https://doi.org/10.1016/j.ijheatmasstransfer.2022.122911

  3. Dedov A.V., Zabirov A.R., Sliva A.P., Fedorovich S.D., Yagov V.V. Vliyaniye uglerodistogo pokrytiya poverkhnosti na teplomassoobmen pri nestatsionarnom plenochnom kipenii. Teplofizika vysokikh temperature, 2019, vol. 57(1), pp. 72–82. DOI: 10.1134/S0040364419010046

  4. Kuzma-KIchta Yu.A., Lavrikov A.V., Shustov M.V., Chursin P.S., Chistyakova A.V., Zvonarev Yu.A., Zhukov V.M., Vailieva L.T. Issledovaniye intensifikatsii teploobmena pri kipenii vody na poverkhnosti s micro i nanoreliefom. Teploenergetika, 2014, no. 3, pp. 35–38. DOI: 10.1134/S004036 3614030060

  5. Song Y., Díaz-Marín C., Zhang L., Cha H., Zhao Y. and Wang E. Three-Tier Hierarchical Structures for Extreme Pool Boiling Heat Transfer Performance. Advanced Materials, 2022, no. 34. Article number 2200899. DOI: 10.1002/adma.202200899

  6. Volodin O.A., Pecherkin N.I., Pavlenko A.N. Intensifikatsiya teploobmena pri kipenii i isparenii zhidkostei na modifitsirovannykh poverkhnostyakh. Teplofizika vysokikh temperature, 2021, vol. 59(2), pp. 280–312. DOI: 10.31857/S0040364421020149

  7. Makarov P.G., Artamonov A.V., Dmitriev A.S. Study of the Leidenfrost Effect on Heterogeneous Surfaces of Complex Structure. Journal of Physics: Conference Series, 2021, no. 2039, article number 012017. DOI: 10.1088/1742-6596/2039/1/012017

  8. Kim H., Kim D. Effects of surface wettability on pool boiling process: Dynamic and thermal behaviors of dry spots and relevant critical heat flux triggering mechanism. International Journal of Heat and Mass Transfer, 2021, no. 180, article number 121762. DOI: 10.1016/j.ijheatmasstransfer.2021.121762

  9. Zhang L., Guo Z., Sarma J., Zhao W. and Da X. Gradient Quasi-Liquid Surface Enabled Self-Propulsion of Highly Wetting Liquids. Advanced Functional Materials, 2021, no. 31, article number 2008614. DOI: 10.1002/adfm.202008614

  10. Sobac B., Rednikov A., Dorbolo S., Colinet P. Leidenfrost effect: Accurate drop shape modeling and refined scaling laws. Physical Review E, 2014, no. 90, article number 053011. DOI: 10.1103/PhysRevE.90.053011

  11. David Quéré. Leidenfrost dynamics. Annual Review of Fluid Mechanics, 2013, no. 45(1), pp. 197–215. DOI: 10.1146/an-nurev-fluid-011212-140709

  12. Linke H., Alemán B.J., Melling L.D., Taormina M.J., Francis M.J., Dow-Hygelund C., Narayanan V., Taylor R., Stout A. Self-Propelled Leidenfrost Droplets. Physical review letters, 2006, no. 96(15), article number 154502. DOI: 10.1103/PhysRevLett.96.154502

  13. Pyshar Yi, Thurgood P., Nguyễn N., Abdelwahab H., Petersen P., Gilliam C., Ghorbani K., Pirogova E., Tang S., Khoshmanesh K. Oscillation and self-propulsion of Leidenfrost droplets enclosed in cylindrical cavities. Soft Matter, 2020, no. 16(38), pp. 8854–8860. DOI: 10.1039.D0SM01153C

  14. Mengyao Wei, Youngsup Song, Yangying Zhu, Daniel J. Preston, Chuan Seng Tan, Evelyn N. Wang. Heat transfer suppression by suspended droplets on microstructured surfaces. Applied Physics Letters, 2020, no. 116, article number 233703. DOI: 10.1063/5.0010510

  15. Chen-li. Sun, Van P. Carey. Marangoni effects on the boiling of 2-propanol/water mixtures in a confined space. International Journal of Heat and Mass Transfer, 2004, no. 47(25), pp. 5417–5426. DOI: 10.1016/j.ijheatmasstransfer.2004.07.014

  16. Lagubeau G., Le Merrer M., Clanet C., Quéré D. Leidenfrost on a ratchet. Nature Physics, 2011, no. 7(5), pp. 395–398. DOI: 10.1038/nphys1925

  17. Dodd L., Agrawal P., Parnell M., Geraldi N.R., Xu B., Wells G., Stuart-Cole S., Newton M.I., McHale G., Wood D. Low-Friction Self-Centering Droplet Propulsion and Transport Using a Leidenfrost Herringbone-Ratchet Structure. Physical Review Applied, 2019, no. 11(3), article number 034063. DOI: 10.1103/PhysRevApplied.11.034063

  18. Upot N., Rabbi K., Khodakarami S., Ho J., Mendizabal J., Miljkovic N. Advances in micro and nanoengineered surfaces for enhancing boiling and condensation heat transfer: a review. Nanoscale Advances, 2023, no. 5, article number 1232. DOI: 10.1039/d2na00669c

  19. Sapozhnikov S.Z., Mityakov V.Yu., Mityakov A.V., Gusakov A.A., Pavlov A.V., Bobyliov P.G. Issledovaniye ipeniya na poverkhnosti shara metodom gradiyentnoi teplometrii. Teplovyie protsessy v tekhnike, 2021, vol. 13(10), pp. 434–441. DOI: 10.34759/tpt-2021-13-10-434-441

  20. Sarma P.K., Subrahmanyam T., Rao V.D., Bergles A.E. Turbulent film boiling on a horizontal cylinder. International Journal of Heat and Mass Transfer, 2001, no. 44(1), pp. 207–214. DOI: 10.1016/S0017-9310(00)00061-2

  21. Thamil Kumaran S.M., Premachandran B. Study of flow and heat transfer characteristics of saturated flow film boiling over two inline cylinders. Physics of Fluids, 2022, no. 34(11), article number 112123. DOI: 10.1063/5.0125192

  22. Lee S., Cha J., Kim K., Choi W. Dynamics of drop impact on heated metal wires: Thermally induced transition from tail to splash to jumping modes. International Journal of Heat and Mass Transfer, 2019, no. 131, pp. 226–236. DOI:/10.1016/ j.ijheatmasstransfer.2018.11.063

  23. Qian B., Fan H., Zhang J., Liu G. and Li P. Heat Exchanging Grid Structures Based on Laser-Based Powder Bed Fusion: Formation Process and Boiling Heat Transfer Performance. Energies, 2022, no. 15(5), article number 1779. DOI:10.3390/en15051779

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI