Thermal conductivity coefficient identification of the material at cryogenic temperatures


Аuthors

Borshchev

,

e-mail: www.moriarty93@mail.ru

Abstract

The article considered an algorithm for carbon fiber-reinforced plastic thermal conductivity determining as a function of temperature while its chilldown in criostated chamber down to the temperature of 2.6 K. The said problem is being solved by the extremum seeking during meansquare deviation minimization between theoretical and experimental temperature fields in the places of temperature sensors placing. Iteration regularization method, where iteration number is the regularizable parameter, is applied as regularization to overcome incorrectness of the “direct” thermal exchange problem setting.

Keywords:

inverse problem of thermal conductivity, iterative regularization method, helium temperature level, cryostat

References

  1. Zaletaev V.M., Kapinos Yu.V., Surguchev O.V. Raschet teploobmena kosmicheskogo apparata. [Calculation of spacecraft heat transfer]. Moscow: Mashinostroenie, 1979, 208 p. (In Russ.)

  2. Krein S.G., Prozorovskaya O.I. Analiticheskie polugruppy i nekorrektnye zadachi dlya ehvolyutsionnykh uravnenii [Analytical semigroups and ill posed problems for evolutionary equations]. Reports of the Academy of Sciences of the USSR, 1960, vol. 133, no. 2, pp. 277–280. (In Russ.)

  3. Bassistov Yu.A., Yanovsky Yu.G. Nekorrektnye zadachi v mekhanike (reologii) vyazkouprugikh sred i ikh regulyarizatsiya [Incorrect problems in mechanics (rheology) of viscoelastic media and their regularization]. Meckanika kompositionnuh materialov i konstruktsii, 2010, vol. 16, no. 1, pp. 117–143. (In Russ.)

  4. Bakushinsky A.B., Kokurin M.Yu., Kokurin M.M. Pryamye i obratnye teoremy dlya iteratsionnykh metodov resheniya neregulyarnykh operatornykh uravnenii i raznostnykh metodov resheniya nekorrektnykh zadach Koshi [Direct and inverse theorems for iterative methods for solving irregular operator equations and difference methods for solving illposed Cauchy problems]. Journal of Computational Mathematics and Mathe-matical Physics, 2020, vol. 60, no. 6, pp. 939–962.

  5. Fanov V.V., Martynov M.B., Karchaev H.Zh. Letatel’nye apparaty NPO im. S.A. Lavochkina (k 80-letiyu predpriyatiya) [Aircraft of S.A. Lavochkin NPO (to the 80th anniversary of the enterprise)]. Vestnik NPO S.A. Lavochkina, 2017, no. 2/36, pp. 5–16. (In Russ.)

  6. Bloch A.G., Zhuravlev Yu.A., Ryzhkov L.N. Teplooeblem izluzechiem [Heat transfer by radiation]. Moscow: Energoatomizdat, 1991, 432 p. (In Russ.)

  7. Tulin D.V., Finchenko V.S. Teoretiko-ehksperimental’nye metody proektirovaniya sistem obespecheniya teplovogo rezhima kosmicheskikh apparatov [Theoretical and experimental methods of designing systems for ensuring the thermal regime of spacecraft]. Moscow: MAI-PRINT, 2014. Vol. 3, pp. 1320–1437. (In Russ.)

  8. Tsaplin S.V., Bolychev S.A., Romanov A.E. Teploobmen v kosmose [Heat transfer in space]. Samara: Izdatel’stvo Samarskogo universiteta, 2013, 56 p. (In Russ.)

  9. Alifanov O.M., Artyukhin E.A., Rumyantsev S.V. Ehkstremal’nye metody resheniya nekorrektnykh zadach [Extreme methods for solving incorrect problems]. Moscow: Nauka, 1988, 288 p. (In Russ.)

  10. Alifanov O.M. Obratnye zadachi teploobmena [Inverse heat transfer problems]. Moscow: Mashinostroenie, 1988, 280 p. (In Russ.)

  11. Formalev V.F. Teploperenos v anizotropnyh tverdyh telah [Heat transfer in anisotropic solids]. Moscow: Fizmatlit, 2015, 238 p. (In Russ.)

  12. Vasin V.V. Modifitsirovannyi metod naiskoreishego spuska dlya nelineinykh regulyarnykh operatornykh uravnenii [A modified steepest descent method for nonlinear irregular operator equations]. Reports of the Academy of Sciences, 2015, vol. 462, no. 3. p. 264–265. (In Russ.)

  13. Golichev I.I. A modified gradient method of steepest descent for solving a linearized problem for nonstationary Navier-Stokes equations. Ufa Mathematical Journal, 2013, vol. 5, no. 4, pp. 60–76.

  14. Formalev V.F., Reviznikov D.L. Chislennye metody [Numerical methods]. Moscow: Fizmatlit, 2004, 400 p. (In Russ.)

  15. Formalev V.F. Analysis of two-dimensional temperature fields in anisotropic bodies taking into account moving boundaries and a large degree of anisotropy. High Temperature, 1990, vol. 28, no. 4, pp. 715–721.

  16. Formalev V.F. Identification of two-dimensional heat flows in anisotropic bodies of complex shape. Journal of Engineering Physics and Thermophysics, 1989, vol. 56, no. 3, pp. 382–386.

  17. Formalev V.F., Kolesnik S.A. Analytical solution of the second initial boundary value problem of anisotropic thermal conductivity. Mathematical modeling, 2003, vol. 15, no. 6, pp. 107–110.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI