Regarding the role of dissipative terms in simulation of rarefied gas flow


Аuthors

Yanyshev D. S.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: dyanishev@gmail.com

Abstract

In this paper methods for calculating rarefied jet flows are analyzed. The formulation of a mathematical model of rarefied flow based on quasi-gasdynamic equations, which differ from the classical Navier – Stokes equations by additional dissipative terms, is presented. Calculation results obtained using both this model and the Navier – Stokes system taking into account second viscosity in comparison vs. ex- perimental data, are presented.

Keywords:

rarefied gas flow, mathematical modeling, jets, quasi-gasdynamic equations

References

  1. Kochetkov Y.M., Molchanov A.M., Siluyanova M.V. Calculation of high-altitude jets of the rocket engine based on quasi-gasdynamic equations. Russian Aeronautics, 2019, vol. 62, no. 3, pp. 423–428. URL: https://doi.org/10.3103/S1068799819030097

  2. Molchanov A.M., Popov V.E. Calculation of Gas Dynamics and Radiation of High-Altitude Jets. Physical-Chemical Kinetics in Gas Dynamics, 2018, vol. 19, iss. 2. URL: http://chemphys.edu.ru/issues/2018-19-2/articles/753/

  3. Chikitkin A., Rogov B., Tirsky G., Utyuzhnikov S. Effect of bulk viscosity in supersonic flow past spacecraft. Applied Numerical Mathematics, 2015, vol. 93, pp. 47–60. URL: https://doi.org/10.1016/j.apnum.2014.01.004

  4. Elizarova T. G. Quasi-gas-dynamic Equations. Springer, Berlin Heidelberg, 2009, 286 p. URL: https://link.springer.com/book/10.1007/978-3-642-00292-2

  5. Molchanov A.M., Yanyshev D.S., Bykov L.V. O roli vtoroi vyazkosti i spravedlivosti gipotezy stoksa pri matematicheskom modelirovanii teploobmena i gidrodinamiki v vysokoskorostnykh techeniyakh [On the role of the second viscosity and the validity of the Stokes hypothesis in mathematical modeling of heat transfer and hydrodynamics in high-speed flows]. Materialy Vos’moi Rossiiskoi national’noi konferentsii po teploobmenu [Proceedings of the Eighth Russian National Conference on Heat Transfer Materialy Vos’moi Rossiiskoi national’noi konferentsii po teploobmenu (17–22 october 2022, Moscow)]. In 2 vol. Vol. 1. Moscow: Moscow Power Engineering Institute, 2022

  6. Fiziko-himicheskie processy v gazovoj dinamike. Spravochnik. V 3 tomah. Tom 2. Fiziko-himicheskaja kinetika i termodinamika [Physico-chemical processes in gas dynamics. Handbook in 3 vol. Vol. 2. Physico- chemical kinetics and thermodynamics]. Ed. by S.A. Losev. Moscow: Nauchnyj izdatel’skij centr mehaniki, 2002. 368 p.

  7. Bykov L.V., Molchanov A.M. Mathematical modeling of jets from jet engines. Thermal processes in engineering, 2011, vol. 3, no. 3, pp. 98–107.

  8. Bykov L.V., Zavelevich F.S., Molchanov A.M. Calculation of thermal radiation from jet engines. Thermal processes in engineering, 2011, vol. 3, no. 4, pp. 164–176.

  9. Molchanov A.M. Numerical Simulation of Supersonic Chemically Reacting Turbulent Jets. 20th AIAA Computational Fluid Dynamics Conference (27–30 June, 2011, Honolulu, Hawaii). URL: https://doi.org/10.2514/ 6.2011-3211

  10. Kuzenov V.V., Ryzhkov S.V., Varaksin A.Y. The Adaptive Composite Block-Structured Grid Calculation of the Gas-Dynamic Characteristics of an Aircraft Moving in a Gas Environment. Mathematics, 2022, vol. 10(12), article number 2130. URL: https://doi.org/10.3390/math10122130

  11. Simmons F.S. Rocket Exhaust Plume Phenomenology. El Segundo: Aerospace Press, 2000, 286 р. URL: https://arc.aiaa.org/doi/book/10.2514/4.989087

  12. Molchanov A.M., Bykov L.V., Yanyshev D.S. Calculating thermal radiation of a vibrational nonequilibrium gas flow using the method of k-distribution. Thermophysics and Aeromechanics, 2017, vol. 24, no. 3, pp. 399–419. URL: https://doi.org/10.1134/S086986431703009X

  13. Fiziko-himicheskie processy v gazovoj dinamike. Spravochnik. V 3 tomah. Tom 3. Modeli processov molekuljarnogo perenosa v fiziko-himicheskoj gazodinamike [Physico-chemical processes in gas dynamics. Handbook. In 3 vol. Vol. 3. Models of molecular transfer processes in physical and chemical gas dynamics]. Ed. by S.A. Losev. Moscow: Fizmatlit, 2012, 284 p.

  14. Vitkin E.I., Karelin V.G., Kirillov A.A., Suprun A.S., Khadyka J.V. A physico-mathematical model of rocket exhaust plumes. International journal of heat and mass transfer, 1997, vol. 40, no. 5, pp. 1227–1241. URL: https://doi.org/10.1016/0017-9310(96)00140-8

  15. Maté B., Tejeda G., Montero S. Raman spectroscopy of supersonic jets of CO2: Density, condensation, and translational, rotational, and vibrational temperatures. The Journal of Chemical Physics, 1998, vol. 108, no. 7, pp. 2676–2685. URL: https://doi.org/10.1063/1.475660

  16. Maté B., Graur I. A., Elizarova T., Chirokov I., Tejeda G., Fernández J., Montero S. Experimental and numerical investigation of an axisymmetric supersonic jet. Journal of Fluid Mechanics, 2001, vol. 426, pp. 177–197. URL: https://doi.org/10.1017/S0022112000002329

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI