Theoretical studying results of thrust increasing of the annular nozzle with a flat central body


Аuthors

Kirshina A. A.*, Levikhin A. A., Kirshin A. Y.

Baltic State Technical University “VOENMEH ” named after D.F. Ustinov, 1, 1st Krasnoarmeyskaya str., Saint Petersburg, 190005, Russia

*e-mail: kirshina_aa@voenmeh.ru

Abstract

The article considers the problems concerning the rocket engine specific energy characteristics enhancingare by ensuring the rated operating mode of the nozzle in a wide range of the ambient pressure variation. One of the possible ways to this problem solution consists in employing the nozzles with a free jet boundary based on an annular nozzle with a flat central body, which structure optimization with the numerical experiment methods is exceedingly labor-intensive process that requires a large number of computations. The purpose of the presented work consisted in developing an engineering technique for constructing a gasdynamic profile of an annular nozzle with a central body. The said technique verification was performed by comparing the obtained results with the simulation results by the ANSYS Fluent software package. All in all recommendations on the optimal gas-dynamic profile constructing of an annular nozzle with a flat central body were formulated.


Keywords:

annular nozzle with a flat central body, Tarasov — Levin nozzle, rocket engine, outlet unit, propulsion performances

References

  1. Vaulin S.D., Khazhiakhmetov K.I. Zhidkostnye raketnye dvigateli s tsentral’nym telom: sostoyanie i per spektivy [Liquid rocket engines with a central body: status and prospects]. Izvestiya vysshih uchebnyh zavedenij. Mashinostroenie, 2021, no. 10, pp. 74–83 (In Russ.). DOI: 10.18698/0536-1044-2021-10-74-83

  2. Dobrovolsky M.V. Zhidkostnye raketnye dvigateli. Os novy proektirovaniya [Liquid rocket engines. Design Fundamentals]. Study book. Ed. by D.A. Yagodnikov. Moscow: Bauman Moscow State Technical University, 2020, 472 p. (In Russ.)

  3. Koltsova T.A. Numerical simulation of flow in the bot tom of a reusable onestage launch vehicle in flight with a running externally expanded cruise engine with a cen tral body and gas intaken in the bottom. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2019, no 5, pp. 392-398. (In Russ.)

  4. Kbab Hakim, Hamitouche Toufik, Mouloudj Y. Study and Simulation of the Thrust Vectoring in Super sonic Nozzles. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2022, vol. 93, no. 1, pp. 13–24. DOI: 10.37934/arfmts.93.1.1324

  5. Bulat P., Komar K., Prodan N., Volkov K. Oscillatory and transient flow modes in block nozzle arrangements with a base region. Acta Astronautica, 2022, vol. 194, pp. 532–543. DOI: 10.1016/j.actaastro.2021.11.022

  6. Bulat P.V., Zasukhin O.N., Upyrev V.V., Silnikov M.V., Chernyshov M.V. Base pressure oscillations and safety of load launching into orbit. Acta Astronautica, 2017, vol. 135. P. 150–160. DOI: 10.1016/j.actaastro.2016.11.042

  7. Ground pressure: collection of scientific articles of the International scientific division of ITMO University «Mechanics and power systems» / Center of a transfer of technologies «KULON»; BGTU «MILITARY MECHA- NICAL INSTITUTE»; ITMO University; under P.V. Bulat’s edition. Krasnodar: Publishing house — South, 2016, 196 p. (In Russ.)

  8. Larionov S.Yu. Raschetno-eksperimental’noe issledovanie techeniya sovershennogo gaza v rezonatore pul’siruyushchego detonatsionnogo dvigatelya [Compu tational and experimental study of the flow of perfect gas in the resonator of a pulsating detonation engine]. Dis sertation for the degree of candidate of technical sciences. Moscow: Moscow Aviation Institute (national research university). 2012, 123 p. (In Russ.)

  9. Levin V.A., Muhin A.N., Afonina N.E., Bogdanov V.N., Khmelevsky A.N. Thrust force mesurements in annular nozzle models with deflector. XLIV Academic space conference dedicated to the memory of academician S.P. Korolev and other outstanding national scienists – pioneers of space exploration abstracts. In 2 vol. Moscow, 2020. Vol. 2, pp. 157–159. (In Russ.)

  10. Bogdanov V.I., Khantalin D.S. Exit devices with reso nators-thrust amplifiers for jet engines. Journal of Engineering Physics and Thermophysics, 2022, no. 2, vol. 95, pp. 448–458. (In Russ.)

  11. Bogdanov V.I., Kuvtyrev D.V., Khantalin D.S. Nozzle with a spherical resonator — thrust augmentor: analysis of dimension impact on propulsion performances, concept optimization. Vestnik Rybinskoi gosudarstvennoi aviatsionnoi tekhnologicheskoi akademii im. P.A. Solov’eva, 2020, no. 2 (53), pp. 22–28. (In Russ.)

  12. Bogdanov V.I., Kuznetsov S.P., Kuvtyrev D.V., Khantalin D.S. Features of calculation of a nozzle with a resonator thrust augmentor and experiment within a small-sized gas turbine engine. Vestnik Rybinskoi gosudarstvennoi aviatsionnoi tekhnologicheskoi akademii im. P.A. Solov’eva. 2021, no 3 (58), pp. 9–13. (In Russ.)

  13. Kirshina A.A., Levikhin A.A., Kirshin A.Yu. Numeri cal method for calculating the nozzle thrust of a wide- range rocket engine. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no. 5, pp. 1016–1024 (In Russ.). DOI: 10.17586/ 2226-1494-2022-22-5-1016-1024

  14. Chaudhuri A., Hadjadj A. Numerical investigations of transient nozzle flow separation. Aerospace Science and Technology, 2016, vol. 53, pp. 10–21.

  15. Menter F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal, 1994, vol. 32, no. 8, pp. 1598–1605.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI