Simulation of gas dynamics in the GTE combustion chamber taking into account the asymmetry of the velocity profile down the compressor


Аuthors

Noskova K. R.*, Guryanov A. I., Guryanova M. M., Koshkin V. I.

Rybinsk State Aviation Technical University named after P.A. Soloviev, RSATU, 53, Pushkin St., Rybinsk, Yaroslavl region, 152934, Russia

*e-mail: crist.timofeewa2011@yandex.ru

Abstract

A new technique for numerical simulation of the combustion chamber of a gas turbine engine is proposed, taking into account the gas dynamics of the flow behind the compressor with an asymmetric velocity profile. The calculation results showed that when an asymmetric velocity diagram is formed behind the compressor (K > 1 or K < 1), the gas-dynamic efficiency in the flow path decreases in the combustion chamber and the necessary stability of the processes is violated. Due to the distortion of the input diagram in the region K > 1 and K < 1, the total pressure losses increase in the annular channels, the front device by 1,5–1,6 times the total losses in the chamber, in contrast to the case of a symmetrical profile (K = 1). The coefficient of hydraulic losses in the chamber increases by 2,3 times at K = 0,64, when at K = 1 it takes the smallest value. The efficiency of introducing a symmetrical profile into the computational region at the inlet to the combustion chamber is proved, which allows minimizing total pressure losses and hydraulic losses.

Keywords:

combustion chamber, asymmetric velocity profile behind the compressor, gas dynamics, hydraulic losses

References

  1. Esclapez L., Ma P.C., Mayhew E., Xu R., Stouffer S., Lee T., Wang H., Ihme M. Fuel effects on lean blow- out in a realistic gas turbine combustor. Combustion and Flame, 2017, no. 181, pp. 82–99.

  2. Kahraman N., Tangöz S., Akansu S.O. Numerical analysis of a gas turbine combustor fueled by hydrogen in comparison with jet-A fuel. Fuel. 2018, no. 181, pp. 66–77.

  3. Amani E., Akbari M.R., Shahpouri S. Multiobjective CFD optimizations of water spray injection in gas- turbine combustors. Fuel, 2018, no. 227, pp. 267–278.

  4. Zhang R.C., Hao F., Fan W.J. Combustion and stability characteristics of ultra-compact combustor using cavity for gas turbines. Applied Energy, 2018, no. 225, pp. 940–954.

  5. Perpignan A. A.V., A.G. Rao, Roekaerts D.J.E.M. Flameless combustion and its potential towards gas turbines. Progress in Energy and Combustion Science, 2018, no. 69, pp. 28–62.

  6. Zhao D., Gutmark E., Ph. de Goey. A review of cavity-based trapped vortex, ultra-compact, high-g, inter- turbine combustors. Progress in Energy and Combustion Science, 2018, no. 66, pp. 42–82.

  7. Guryanova M. M, Piralishvili Sh.A. Influence of input asymmetry of the velocity profile and initial intensity of turbulence on the hydraulics of the separation diffuser of the gas turbine engine combustion chamber. Russian Aeronautics, 2016, no. 2, pp. 38–45.

  8. Gur’yanova M.M., Piralishvili Sh.A. Joint effect of in- put asymmetrical velocity profile and initial turbulence intensity on hydraulics of a separated diffuser of GTE combustion chamber. Russian Aeronautics, 2016, vol. 59, no. 2, pp. 197–205.

  9. Kostyuk V.E., Kirilash E.I., Kravchenko T.V. Vliyanie vhodnoj neravnomernosti potoka na gidravlicheskoe soprotivlenie otryvnogo diffuzora kamery sgoraniya aviacionnogo GTD. Aviacionno-kosmicheskaya tekhnika i technologiya, 2008, no. 7 (54), pp. 99–104.

  10. Guryanova M.M. Razrabotka modeli rascheta otryvnogo diffuzora kamery sgoraniya GTD s tsel’yu snizheniya gidravlicheskikh poter’ [Development of a model for calculating the separation diffuser of the gas turbine engine combustion chamber in order to reduce hydraulic losses]. Ph.D. thesis. Rybinsk: Rybinskij gosudarstvennyj aviacionnyj tekhnicheskij universitet imeni P.A. Solov’eva, 2013, 135 p.

  11. Guryanova M.M., Piralishvili Sh.A., Veretennikov S.V. Aerodynamic of combustion chamber with separation diffusser. Aviakosmicheskoe priborostroenie, 2009, no. 11, pp. 1–7.

  12. Syed A., Nemitallah M.A., Habib M.A., Mansir S.I.B. Experimental investigation of the stability of a turbulent diffusion flame in a gas turbine combustor. Energy, 2018, no. 157, pp. 904–913.

  13. Xu L., Huang Yu., Ruan C. Study of the Dump Diffuser Optimization for Gas Turbine Combustors. Procedia Engineering, 2015, no. 99, pp. 828–834.

  14. Asgari B., Amani E.A. A multi-objective CFD optimization of liquid fuel spray injection in dry-low-emission gas-turbine combustors. Applied Energy, 2017, no. 203, pp. 696–710.

  15. Ayed A.H., Kusterer K., Funke H.H.W., Keinz J., Striegan C., Bohn D. Improvement study for the dry- low-NOx hydrogen micromix combustion technology. Propulsion and Power Research, 2015, no. 4 (3), pp. 132–140.

  16. Chen J., Wang Yu., Liu H., Weng Yi. Experimental study of flow characteristics of enhanced biogas leanpremixed nozzle of micro gas turbine by PIV. Applied Thermal Engineering, 2017, no. 121, pp. 90–102.

  17. Yongbin J., Bing G., Zhongran Ch., Shusheng Z. Overall cooling effectiveness of effusion cooled annular combustor liner at reacting flow conditions. Applied Thermal Engineering, 2018, no. 130, pp. 877–888.

  18. Han D.-S., Kim G.-B., Jeon Ch.-H. Experimental study of NOx correlation for fuel staged combustion using lab-scale gas turbine combustor at high pressure. Experimental Thermal and Fluid Science, 2014, no. 58, pp. 62–69.

  19. Serbin S.I., Vilkul S.V., Vilkul V.V. Issledovnie vliyaniya parametrov radial’nogo zavikhritelya na temperaturnoe pole i strukturu potoka v kamere sgoraniya GTD [Investigation of the influence of radial swirler parameters on the temperature field and flow structure in the gas turbine engine combustion chamber]. Vestnik dvigatelestroeniya, 2010, no. 2, pp. 155–159.

  20. Kirchu F.I., Peiman M., Bogdanov I.Yu. Numerical modeling of separated flows and boundary layer control in diffuser channels. Bulletin of National Technical University of Ukraine «Kyiv Polytechnic Institute», 2015, no. 2 (74), pp. 106–114.

  21. Guryanova M.M., Timofeeva K.R., Guryanov A.I. Investigation of the Effect of the Output Parameters of the Flow behind the Compressor on the Gas Dynamics of the Separation Diffuser of the Combustion Chamber. AIP Publishing. Heat and Mass Transfer and Hydrodynamics in Swirling Flows, HMTHSF 2019: Proceedings of the 7th International Conference, 2020, no. 2211, pp. 1–5.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI