Methods to increase Leontiev tube efficiency


Аuthors

Khazov D. E.1*, Medvetskaya N. V.1, 2

1. Moscow State University, Institute of Mechanics,
2. Joint Institute for High Temperatures of the Russian Academy of Sciences, 13, Izhorskaya str., Moscow, 125412, Russia

*e-mail: dkhazov@mail.ru

Abstract

A.I. Leontiev in 1997 proposed a device for machineless energy separation, which later be- came known as the Leontiev tube. The device is a heat exchanger of the pipe-in-pipe type, in which the flow flows through one channel at supersonic speeds, and through the other at subsonic speeds. The channels are separated by a heat-conducting wall. The work discusses the operation of such a device. Based on a one- dimensional model, the influence of the value of the temperature recovery factor on the value of energy sepa- ration (the difference in stagnation temperatures at the outputs and input to the device) is shown. A review of available experimental data on the influence of the pressure gradient (flow behind the backward-facing step) in supersonic gas flows on the temperature recovery factor is carried out. Two-dimensional numerical models of supersonic turbulent flow around the return step are constructed. The models were validated using available experimental data.

Keywords:

energy separation, compressible flows, temperature recovery factor, backward-facing step

References

  1. Leontiev A.I. Temperaturnaya stratifikatsiya sverkhzvukovogo gazovogo potoka [Temperature stratification of supersonic gas flow]. Doklady Akademii nauk, 1997, vol. 354, pp. 475–477. (In Russ.).

  2. Eckert E.R.G. Cross transport of energy in fluid streams. Wärmeund Stoffübertragung, 1987, vol. 21, no. 2–3, pp. 73–81.

  3. Zditovets A.G., Titov A.A. Eksperimental'noe issledo vanie gazodinamicheskogo metoda bezmashinnogo energorazdeleniya vozdushnykh potokov [Experimental study of the gas-dynamic method of machine-free energy separation of air flows]. Thermal Processes in Engi neering, 2013, no. 9, pp. 391–397. (In Russ.)

  4. Zditovets A.G., Vinogradov Yu.A., Strongin M.M. Eksperimental'noe issledovanie bezmashinnogo energorazdeleniya vozdushnykh potokov v trube Leont'eva [Experimental study of machine-free energy separation of air flows in a Leontief tube]. Thermal Processes in Engineering, 2015, no. 9, pp. 397–404. (In Russ.).

  5. Leontiev A.I. Zditovets A.G., Vinogradov Yu.A., Strongin M.M., Kiselev N.A. Experimental investigation of the machine-free method of temperature separation of air flows based on the energy separation effect in a compressible boundary layer. Experimental Thermal and Fluid Science, 2017, no. 88, pp. 202–219. URL: https://doi.org/10.1016/j.expthermflusci.2017.05.021

  6. Burtsev S.A. Issledovanie putei povysheniya effektivnosti gazodinamicheskogo energorazdeleniya [Exploring ways to improve efficiency of gasdynamic energy separation]. High Temperature, 2014, vol. 52, no. 1, pp. 14–21. (In Russ.).

  7. Vigdorovich I.I., Leontev A.I. Energorazdelenie gazov s malymi i bol'shimi chislami Prandtlya [Energy separation of gases with low and high Prandtl numbers]. Fluid Dynamics, 2013, no. 6, pp. 117–134. (In Russ.).

  8. Khazov D.E. Chislennoe issledovanie bezmashinnogo energorazdelenija vozdushnogo potoka [Numerical investigation of the nonmachine air stream energy separation]. Thermal Processes in Engineering, 2018, vol. 10, no. 1–2, pp. 25–36. (In Russ.).

  9. Makarov M.S., Makarova, S.N. Effektivnost' energo razdeleniya pri techenii szhimaemogo gaza v ploskom kanale [Efficiency of energy separation at compressible gas flow in a planar duct]. Thermophys. Aeromech, 2013, vol. 20, no. 6, pp. 777–787. (In Russ.).

  10. Khazov D.E., Leontiev A.I., Zditovets A.G. Kiselev N.A., Vinogradov Yu.A. Energy separation in a channel with permeable wall. Energy, 2022, vol. 239, part E, article number 122427. URL: https://doi.org/10.1016/j.energy.2021.122427

  11. Makarov M.S., Makarova S.N., Shibaev A.A. The numerical study of energy separation in a two-cascade leontiev tube. Journal of Physics: Conference Series, 2016, vol. 754, article number 062010. DOI: 10.1088/1742-6596/754/6/062010

  12. Makarov M.S., Makarova S.N., Naumkin V.S. Gazo dinamicheskoe energorazdelenie v dvukh- i trekhkaskadnykh trubakh Leont'eva s izoliruyushchei vstavkoi [Gasdynamic energy separation in two- and three-stage Leontiev tubes with an insulating insert]. Moscow: Izdatel’skii dom Moskovskogo ehnergeticheskogo instituta, 2018, vol. 1, pp. 205–209. (In Russ.).

  13. Makarov M.S., Makarova S.N., Naumkin V.S. Energy separation efficiency of air and helium-xenon mixture flowing in the single Leontiev tube with finned wall. Journal of Physics: Conference Series, 2018, vol. 1128, article number 012018. DOI: 10.1088/1742-6596/1128/1/012018

  14. Golubkina I.V., Osiptsov A.N. Vliyanie primesi neispa- ryayushchikhsya kapel' na strukturu techeniya i temperaturu adiabaticheskoi stenki v szhimaemom dvukhfaznom pogranichnom sloe [The effect of admixture of non- evaporating droplets on the flow structure and adiabatic wall temperature in a compressible two-phase boundary layer]. Fluid Dynamics, 2019, no. 3, pp. 58–59. DOI: 10.1134/S0568528119030046. (In Russ.).

  15. Golubkina I.V., Osiptsov A.N. Compressible gas-droplet flow and heat transfer behind a condensation shock in an expanding channel. International Journal of Thermal Sci ences, 2022, vol. 179, article number 107576. URL: https://doi.org/10.1016/j.ijthermalsci.2022.107576

  16. Zditovets A.G., Kiselev N.A., Vinogradov Yu.A., Po povich S.S. Adiabatic wall temperature in the supersonic flow of moist air with spontaneous condensation. Experi mental Thermal and Fluid Science, 2024, vol. 150, article number 111057. URL: https://doi.org/10.1016/j.exptherm flusci.2023.111057

  17. Zditovets A.G., Vinogradov Yu.A., Strongin M.M., Titov A.A., Kiselev N.A. Bezmashinnoe energorazdelenie gazovykh potokov [Machineless energy separation of gas flows]. Ed. by A.I. Leont'ev. Moscow: Izdatel’stvo “Kurs”, 2016, 112 p. (In Russ.).

  18. Shlikhting G. Teoriya pogranichnogo sloya [Boundary Layer Theory]. Moscow: Nauka, 1974, 711 p. (In Russ.).

  19. Ackermann G. Plattenthermometer in strömung mit großer geschwindigkeit und turbulenter grenzschicht. Forschung auf dem Gebiet des Ingenieurwesens A, 1942, vol. 13, no. 6, pp. 226–234.

  20. Makarov M.S. Gazodinamicheskaya temperaturnaya stratifikatsiya v sverkhzvukovykh potokakh [Gasynamic temperature stratification in supersonic flows]. Ph.D. in physics and mathematics. Novosibirsk: Insitut teplofiziki im. S.S. Kutateladze SO RAN, 2007, 154 p. (In Russ.).

  21. Makarova M.S. Chislennoe issledovanie teplovykh i dinamicheskikh protsessov v elementakh ustroistv energorazdeleniya gazov [Numerical study of thermal and dynamic processes in elements of gas energy separation devices]. Ph.D thesis. Moscow: Joint Institute for High Temperatures, 2014, 164 p. (In Russ.).

  22. Vinogradov Yu.A., Ermolaev I.K., Zditovets A.G., Leont'ev A.I. Izmerenie ravnovesnoi temperatury stenki sverkhzvukovogo sopla pri techenii smesi gazov s niz kim znacheniem chisla Prandtlya [Measuring the equilibrium temperature of the wall of a supersonic nozzle during the flow of a mixture of gases with a low Prandtl number]. Izvestiya Rossiiskoi akademii nauk. Energetika, 2005, no. 4, pp. 128–133. (In Russ.).

  23. Rudy D.H., Weinstein L.M. Investigation of turbulent recovery factor in hypersonic helium flow. AIAA Journal, 1970, vol. 8, no. 12, pp. 2286–2287. URL: https://doi.org/10.2514/3.6108

  24. Gadd G.E., Cope W.F., Attridge J.L. Heat-transfer and skin-friction measurements at a Mach number of 2.44 for a turbulent boundary layer on a flat surface and in regions of separated flow. R. & M, no. 3148. A.R.C. Technical Report. London, 1958. URL: https://reports. aerade.cranfield.ac.uk/handle/1826.2/3716

  25. Thomann H. Measurements of heat transfer and recovery temperature in regions of separated flow at a Mach number of 1.8. Flygtekniska Försökanstalten, Rept. 82. Stockholm, 1959.

  26. Kays W.M., Crawford M.E. Convective heat and mass transfer. McGraw-Hill Ryerson, Limited, 1980, 420 p.

  27. McDaniel J.C., Fletcher D.G., Hartfield R.J., Hollo S.D. Transverse injection into Mach 2 flow behind a rearward-facing step: A 3-d, compressible flow test case for hypersonic combustor CFD validation. AIAA, International Aerospace Planes Conference, 3rd, Orlando, FL (Decеmber 3–5, 1991), 38 p.

  28. Eklund D.R., Fletcher D.G., Hartfield R.J., Northam G.B., Dancey C.L. A comparative computational/experimental investigation of Mach 2 flow over a rear- ward-facing step. Computers & Fluids, 1995, vol. 24, no. 5, pp. 593–608. URL: https://doi.org/10.1016/0045-7930(95)00004-V

  29. Kutateladze S.S., Leontiev A.I. Teplomassoobmen i trenie v turbulentnom pogranichnom sloe. [Heat transfer, mass transfer, and friction in turbulent boundary layers]. Moskva: Energoatomizdat, 1985, 318 p. (In Russ.).

  30. Popovich S.S. Aerodinamicheskoe okhlazhdenie stenki pri techenii sverkhzvukovogo potoka v slede za obratnym ustupom [Aerodynamic cooling for supersonic wake flow behind a backward-facing step]. Fizikokhimicheskaya kinetika v gazovoi dinamike, 2019, vol. 20, no. 1, pp. 1–11. (In Russ.). URL: http://doi.org/10.33257/PhChGD.20.1.781

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI