Heat transfer from microstructured surfaces under single-phase forced water flow


Аuthors

Getman P. V.1, 2, Shchelchkov A. V.1, 2*, Gortyshov Y. F.1, Tarasevich S. E.1, Zubkov N. N.3

1. Kazan National Research Technical University named after A.N. Tupolev, Kazan, Russia
2. VNIIR – Affiliated branch of the D.I. Mendeleev Institute for Metrology, Kazan, Russia
3. Bauman Moscow State Technical University, MSTU, 5, bldg. 1, 2-nd Baumanskaya str., Moscow, 105005, Russia

*e-mail: lexa_kzn@mail.

Abstract

The paper presents the results of an experimental study of heat transfer during forced flow of water from microstructured surfaces in a slot channel in the range of low Reynolds numbers. The microstructured surfaces under study were obtained using a resource-saving (without waste) method of deforming cutting with various structural shapes and sizes. A description of the experimental setup, methods of conducting and pro- cessing experimental data is presented. Based on the results of the experimental study, it was found that the maximum increase in heat transfer coefficients compared to a smooth surface reaches Nu/Nu0 = 16,5.

Keywords:

heat transfer, deformation cutting method, thermal efficiency, ordered porosity, pressure loss

References

  1. Kandlikar S.G., Grande W.J. Evolution of microchannel flow passages-thermohydraulic performance and fabrication technology. Heat Transfer Engineering, 2003, vol. 24, no. 1, pp. 3–17. URL: https://doi.org/10.1080/01457630304040

  2. Reeves M., Moreno J., Beucher P, Loong, S.J, Bono D. Investigation of an aluminium-copper clad metal baseplate for liquid cooling: Experimental characteriza tion and thermal modelling. Development of Research in Microscale and Nanoscale Thermal and Fluid Sciences, 2016, pp. 47–54. URL: https://www.scopus.com/authid/detail.uri?authorId=55602525900

  3. Bessanane N., Si-Ameur M., Rebay M. Numerical study of the temperature effects on heat transfer coeffi cient in mini-channel pin-fin heat sink // International Journal of Heat and Technology, 2022, vol. 40, no. 1, pp. 247–257. URL: https://doi.org/10.18280/ijht.400129

  4. Xu J., Zhang K., Duan J., Lei J., Wu J. Systematic Comparison on Convective Heat Transfer Characteris tics of Several Pin Fins for Turbine Cooling. Crystals, 2021, no. 11, article number 977. URL: https://doi.org10.3390/cryst11080977

  5. Microscale and Nanoscale Heat Transfer: Analysis, De- sign, and Application. Ed. by Mourad Rebay, Sadik Kakac, Renato M. Cotta. Boca Raton, 2016, 505 p. URL: https://doi.org/10.1201/b19261

  6. Skrypnik A.N., Shchelchkov A.V., Popov I.A., Ryzhkov D.V., Sverchkov S.A., Zhukova Y.V., Chornyi A.D., Zubkov N.N. Thermohydraulic Efficiency of Tubes with Internal Spiral Finning. Journal of Engineering Physics and Thermophysics, 2018, vol. 91, no. 1, pp. 52–63. URL: https://doi.org/10.1007/s10891-018-1718-y

  7. Kuzma-Kichta Yu.A., Ivanov N.S., Lavrikov A.V., Stenina N.A., Shtefanov Yu.P., Prokopenko I.F. Reducing the thermal resistance of a heat stabilizer by ap plying a coating of micro- and nanoparticles in the evaporator. Thermal processes in engineering, 2022, vol. 14, no. 2, pp. 50–55.

  8. Shanin Yu.I. Application of swirling flows in cooling systems of laser mirrors. Thermal processes in engineering, 2018, vol. 10, no. 7–8, pp. 307–316.

  9. Fedoseev V.N., Shanin O.I., Shanin Yu.I., Afanasyev V.A. Teploobmen v pryamougol’nykh kanalakh s teploprovodnymi stenkami pri odnostoronnem nagreve [Heat transfer in rectangular channels with heat – conducting walls with one-sided heating]. Teplofizika vysokih temperatur, 1989, vol. 7, no. 6, pp. 1132–1138.

  10. Nunner W. Warmeubergang und Druckabfall in rauchen Rohren. VDI-Forschungscheft, 1956, no. 455, pp. 5–39.

  11. Koch R. Druckverlust und Warmeubergang bei verwir- belter Stromung. VDI-Forschungscheft, 1958, no. 469, p. 44.

  12. Tullius J.F., Tullius T.K., Bayazitoglu Y. Optimization of short micro pin fins in minichannels. International Journal of Heat and Mass Transfer, 2012, no. 55, pp. 3921–3932

  13. Dzyubenko B.V., Dreitser G.A., Yakimenko R.I. Thermohydraulic efficiency of heat exchangers with flow swirling by helical tubes. International Journal of Heat Exchangers, 2006, vol. 7. no. 1, pp. 145–162.

  14. Olimpiev V.V., Mirzoev B.G. Energy-efficient intensi fiers of laminar heat transfer. Russian Aeronautics, 2013, vol. 56, no. 2, pp. 185–190.

  15. Il’in G.K., Tarasevich S.E., Shchelchkov A.V., Yakovlev A.B., Zlobin A.V. Thermal and hydraulic characteristics of rough tubes including those with an inserted twisted band. Russian Aeronautics, 2008, vol. 51, no. 4, pp. 402–406.

  16. Popov I.A. Intensifikatsiya teploobmena: monografiya [Hydrodynamics and heat transfer in porous heat exchange elements and devices]. Ed. by Y.F. Gortyshov. Kazan: Tsentr innovacionnyh tekhnologij, 2007, 240 p. URL: https://elibs.kai.ru/_docs_file/799474/HTML/3/

  17. Gortyshov Y.F., Popov I.A., Gulitsky K.E. Experimental studies of hydrodynamics and heat transfer in channels with high-porous cellular materials in single- phase forced convection and flow boiling of working fluids // ASME 1999 International mechanical engineering congress and exposition (14–19 november 1999, Nash ville, Tennessee USA). Нeat transfer. Vol. 2. New York, 1999. P. 115–123.

  18. Webb R.L. High-performance, low-cost liquid micro- channel cooler. Department of Mechanical Engineering. Penn State University, University Park, PA 1680. URL: https://www.microcooling.com/pdfs/Penn_State_Univ_Article.pdf

  19. Gortyshov Yu.F., Popov I.A., Shchelchkov A.V., Ryzhkov D.V. Teplogidravlicheskie kharakteristiki teploobmennykh apparatov s poverkhnostnoi intensifikatsiei teploobmena v vide sfericheskikh vyemok i vystupov [Thermohydraulic characteristics of heat exchangers with surface intensification of heat transfer in the form of spheical recesses and protrusions]. Thermal processes in engineering, 2009, vol. 1, no. 3, pp. 102–107.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI