Features and details of modern technological processes, including surface plastic deformation, are widely studied numerically, though often some physical effects, for example plastic work heating, or preliminary mesh studies are not included. In this paper, explicit finite element analysis method is used to simulate a shot peening process of Ti6Al4V using AISI 52100 shots aiming to determine the effect of heating on residual stresses. Elastoplastic Johnson – Cook models are used both with the Gruneisen equation of state. A single shot with a diameter of 0,3 mm normally impacts a fixed titanium alloy sample at 10 m/s – 40 m/s. Preliminary mesh convergence and particle number convergence studies have shown that 12 shots are needed and the mesh size in the contact area should be at least 0,005 mm (1,7% of particle diameter), and the peened layer depth is similar for all cases being about 0,17 mm. The temperature rise in the contact area is 15 ⁰С, which insignificantly affects the residual stresses, that have a maximum of 770 MPa at depth of 0,024 mm.
Tarodiya R., Levy A. Surface erosion due to particle- surface interactions: A review. Powder Technology, 2021, vol. 387, pp. 527–559. DOI: 10.1016/j.powtec.2021.04.055
Fardan A., Berndt Christopher C., Ahmed R. Numer ical modelling of particle impact and residual stresses in cold sprayed coatings: A review. Surface and Coatings Technology, 2021, vol. 409, article number 126835. DOI: 10.1016/j.surfcoat.2021.126835
Kiselev I.A., Zhukov N.A., Vasilyev B.E., Selivanov A.N. Modeling of Residual Stresses when Calculating Strength of Lock Joint Elements. Part 1. Modeling of the Shot Peening Process. BMSTU Journal of Mechanical Engineering, 2018, no. 11, pp. 49–59. (In Russ.). DOI: 10.18698/0536-1044-2018-11-49-59.
Kol’tsov V.P., Le Chi Vinh, Starodubtseva D.A., Nguyen Minh Hoang. Modeling of the formation of the main quality indicators of the surface layer of parts dur ing shot-impact hardening. Modern technologies. System analysis. Modeling, 2022, no. 3(75), pp. 50–58. (In Russ.). DOI: 10.26731/1813-9108.2022.3(75).50-58.
Pashkov A.E., Pashkov A.A., Samoilenko O.V. Development of Initial Stresses During Shot Peening. Vestnik Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University]. 2022, vol. 20, no. 4, pp. 120–128. (In Russ.). URL: https://doi.org/10.18503/1995-2732-2022-20-4-120-128
Faucheux P. Simulating Shot Peen Forming with Eigenstrains. Ph.D. thesis. Polytechnique Montréal. Poly-Publie, 2019. URL: https://publications.polymtl.ca/4189/ (access date: 25.11.2023)
Wu J., Chen K., Zhang P., Zhu J., Liu G., Wei P., Liu H. Effects of peening velocity and coverage on peen forming. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2023. DOI: 10.1177/09544089231207086.
Lyushnya D.A. Issledovanie protsessa drobestruinoi obrabotki s primeneniem DEM-FEM podkhoda [Investigation of the blasting process using a DEM-FEM approach]. Materials science, shape-generating technologies and equipment 2022 (ICMSSTE 2022) (Yalta, May 16–19, 2022). Simferopol’: Izdatel’skii dom Krymskogo federal’nogo universiteta imeni V.I. Vernadskogo, 2022, pp. 531–537. (In Russ.).
Du M., Li Z., Feng L., Dong X., Che J., Zhang Y. Numerical simulation of particle fracture and surface erosion due to single particle impact. AIP Advances, 2021, no. 11 (3), article number 035218. DOI: 10.1063/5.0042928.
Babaitsev A.V., Rabinskii L.N., Min Y.N. Method for evaluating residual stresses in AlSi10Mg alloy specimens obtained by SLM technology. Trudy MAI, 2021, no. 119. (In Russ.). URL: DOI: 10.34759/trd-2021-119-10.
Sazanov V.P., Kirpichev V.А., Pismarov A.V. Distri bution of residual stresses in bottom of thread after ad vance surface plastic deformation. Trudy MAI, 2023, no. 131. (In Russ.). DOI: 10.34759/trd-2023-131-07.
Kovalev A.A., Krasko A.S., Sidorov P.A. Shock inter action simulation of sprayed particles with the part sur–face while plasma coatings forming. Vestnik MAI, 2021, vol. 28, no. 4, pp. 257–266. (In Russ.). DOI: 10.34759/ vst-2021-4-257-266.
Khan A., Suh Y.S., Kazmi R. Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys. International Journal of plasticity, 2004, vol. 20, iss. 12, pp. 2233–2248. DOI: 10.1016/j.ijplas.2003.06.005.
Steinberg D.J. Equation of state and strength properties of selected materials, Lawrence Livermore national laboratory report. UCRL-MA-106439, Liver-more, CA, 1996. URL: https://books.google.ru/books/about/Equation_of_State_and_Strength_Propertie.html?id=UyEXHAAACAAJ&redir_esc=y (access date: 25.11.2023).
ASM Aerospace Specification Metals Inc. URL: https://asm.matweb.com/search/SpecificMaterial.asp?bassnum=mtp641 (date of appeal: 25.11.2023).
Kuznetsov V., Smolin I., Skorobogatov A., Akhmetov A. Finite Element Simulation and Experimental Investigation of Nanostructuring Burnishing AISI 52100 Steel Using an Inclined Flat Cylindrical Tool. Applied Sciences and Technology, 2023, no. 13, article number 5324. DOI: 10.3390/app13095324
Chen W., Shi Y., Ma J., Xu C., Lu S., Xu X. Stochas tic Material Point Method for Analysis in Non-Linear Dynamics of Metals. Metals, 2019, no. 9, article number 9010107. DOI: 10.3390/met9010107.
Matweb. Material property data. URL: https://www.maweb.com/search/DataSheet.aspx?MatGUID=d0b0a51bff894778a97f5b72e7317d85&ckck=1 (access date: 25.11.2023).
Totten G.E. ASM handbook, Volume 18: Friction, lubri cation, and wear technology. ASM international, Cleveland, 1992. URL: https://www.semanticscholar.org/paper/ASM-Handbook%2C-Volume-18%3A-Friction%2C-Lubrication%2C-and-Totten/ca1cb69c1df9f26ce0c068e521ecb57f07cd3dc7/ (access date: 25.11.2023).
mai.ru — informational site of MAI Copyright © 2009-2024 by MAI |