Gradient heat-metering while firebox processes monitoring


Аuthors

Mityakov V. Y.*, Proskurin V. , Sapozhnikov S. Z., Pavlov A. V., Bobylev P. G.**

Peter the Great St. Petersburg Polytechnic University, 29, Polytechnicheskaya str., St. Petersburg, 195251, Russia

*e-mail: mitvlad@mail.ru
**e-mail: pavel_b.g.97@mail.ru

Abstract

The article presents two methods of the gradient heat-metering application for firebox processes monitoring, allowing determine the heat flux density on the surfaces of the screening pipes and in the firebox space of the boiler in the real time mode without penetrating the high-pressure circuit. The experiments with the operating DKVR-10-13 boiler were conducted both with the heterogeneous sensors of the heat flow at the screening pipes and with the tubular water-cooled probe with heterogeneous gradient sensor of the heat flow. The authors considered pros and contras of the presented approaches and drew inferences of their applicability. Gradient heat-metering as a new firebox processes monitoring method will allow diagnosing the combustion apparatus faults, determining the most heat-stressed firebox zones and optimizing the boiler operation.

References

  1. Taler J., Duda P., Wegloski B., Zima W., Gradziel S., Sobota T., Taler D. Identification of local heat flux to membrane water-walls in steam boilers. Fuel, 2009, vol. 88, no. 2, pp. 305–311. URL: https://doi.org/10.1016/j.fuel. 2008.08.011

  2. Belyakov I.I. Opyt raboty barabannogo kotla davleniyem 18,5 MPa [Operating experience of 18.5 MPa drum boiler]. Teploenergetika, 2007, no. 7, pp. 61–66.

  3. Prutkovsky E.N., Baldina O.M., Demirchan X.G., Cherkun Yu.P., Ozerov V.I., Komissarchik I.N., Anisimova O.L., Kontorovich L.E., Abashkin G.V. GTM 24.020.30-75. Metodika ispytaniy parogazovykh ustanovok [GTM 24.020.30-75. Methodology for testing combined cycle gas plants]. Saint Petersburg. Central Research and Design Boiler-Turbine Institute named after I.I. Polzunova. 1975, 45 p. URL: https://library-full.nadzor-info.ru/doc/68579

  4. Bazhaikin A.N., Baev V.K., Gulyaev I.P. Izmereniye temperatury plameni pri gorenii vstrechnykh struy. Yugra State University Bulletin, 2015, vol. 2, no. 37. pp. 7–13.

  5. Sankar G., Kartikeyan V.R., Chandrasekhara Rao A., Seshadri P.S., Balasubramanian K.R. A New Method for Prediction of Local Heat Flux on Membrane Waterwall with Rifled Tubes of Subcritical Boilers. International Journal of Applied Engineering Research. 2016, vol. 11, no. 2, pp. 1273–1281.

  6. Taler J., Taler D., Ludowski P. Measurements of local heat flux to membrane water walls of combustion chambers. Fuel, 2014, vol. 115, pp. 70–83. URL: https://doi.org/ 10.1016/j.fuel.2013.06.033

  7. Gulyaev I.P., Ermakov K.A., Gulyaev P.Yu. New high-speed combination of spectroscopic and brightness pyrometry for studying particles temperature distribution in plasma jets. European Researcher, 2014, vol. 71, no. 3–2, рp. 564–570. DOI: 10.13187/issn.2219-8229

  8. Carlos T. Salinas, Yang Pu, Chun Lou, Débora B. dos Santos. Experiments for combustion temperature measurements in a sugarcane bagasse large-scale boiler furnace. Applied Thermal Engineering, 2020, vol. 175, article number 115433. URL: https://doi.org/10.1016/j.applthermaleng.2020.115433

  9. Sanatullov R.R., Ksenofontov S.I. Stepen' chernoty diffuzionnogo plameni uglevodorodnogo topliva. Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I.Ya. Yakovleva, 2012, no. 4 (76), pp. 159–163.

  10. Martucci A., De Gregorio F., Musto M., Petrella O., Marciano L., Rotondo G., Gaudino E. Innovative calibration methodology for gardon gauge heat flux meter. Proceedings of the IEEE 7th International Workshop on Metrology for AeroSpace, MetroAeroSpace (22–24 June 2020, Pisa). IEEE International Worksh on Metrology for AeroSpace. Pisa, 2020, pp. 288–293. DOI: 10.1109/MetroAeroSpace48742.2020.9160133

  11. Sapozhnikov S.Z., Mityakov V.Yu. Heatmetry. The Science and Practice of Heat Flux Measurement. Springer International Publishing, 2020, 209 p.

  12. Zhang D., Shi H. Meng C., Wu Y., Zhang H., Zhou W., Ran S. Measurements on Heat Flux Distribution in a Supercritical Arch-Fired Boiler. Clean Coal Technology and Sustainable Development. Ed by G. Yue, S. Li. Springer: Singapore, 2016, pp. 207–212.

  13. Sapozhnikov S.Z., Mityakov V.Y., Seroshtanov V.V., Gusakov A.A. The combination of PIV and heat flux measurement in study of flow and heat transfer near a circular finned cylinder. Journal of Physics: Conference Series: 15th International Conference on Optical Methods of Flow Investigation (June 24–28, 2019, Moscow). Vol. 1421. IOP Publishing Ltd., 2019, article number 012064. DOI: 10.1088/1742-6596/1421/1/012064

  14. Pavlov A.V., Bobylev P.G., Sapozhnikov S.Z. Gradient heatmetry in the study of heat transfer during boiling in a large volume of subcooled water and liquid with the addition of Al2O3 microparticles. Thermal Engineering, 2023, no. 3, pp. 40–48. DOI: 10.56304/S0040363623030062

  15. Sapozhnikov S.Z., Mityakov V.Y., Babich A.Y., Zainullina E.R. Study of condensation at the surfaces of tube with gradient heat flux measurement. MATEC Web of Conferences. Saint Petersburg, 2018, vol. 245. DOI: 10.1051/matecconf/201824506010

  16. Mityakov V.Yu., Pavlov A.V., Bobylev P.G. Sozdaniye i graduirovka pervichnykh preobrazovateley na osnove kompozitsii med’-nikel [Creation and calibration of primary converters based on the composition of coppernickel]. 29th All-Russian conference Week of Science Peter the Great St.Petersburg Polytechnic University (SPbPU) (18–23 November, 2019, St. Petersburg). St. Petersburg: Politechpress, 2020, pp. 164–166.

  17. Bobylev P.G.; Pavlov A.V.; Proskurin V.M., Andreyev Y.V., Mityakov V.Y., Sapozhnikov S.Z. Gradient Heatmetry in a Burners Adjustment. Inventions, 2022, vol. 7, iss. 7. DOI: 10.3390/inventions7040122

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI