Thermal conductivity determining technique in the circumferential direction of the space composite structures’ hollow rod elements


Аuthors

Wang J. , Denisov O. V.*, Denisova L. V.

Bauman Moscow State Technical University, MSTU, 5, bldg. 1, 2-nd Baumanskaya str., Moscow, 105005, Russia

*e-mail: denisov.sm13@mail.ru

Abstract

The authors proposed a technique for the thermal conductivity coefficient determining of composite material in the direction of curvilinear reinforcement surface. The technique has been evaluated on the element of a full-scale rod space structure made of carbon plastic and is based on the contact heating method by dint of the carbon tape. The technique provides for the temperature fields measurement by contact sensors and further processing of the experimental data with the program for solution of the coefficient inverse problem of heat conduction in the extreme formulation.

Keywords:

thermal conductivity coefficient, thermocouple, rod space structure, carbon fiber reinforced plastic, temperature measurement

References

  1. Bondarev A.V., Blinov A.F., Artamonov S.V., Nedashkovskaya E.S. Prospects for the development of space erectable antennas on the basis of a truss structure. Information and space, 2017, no, 4. pp. 22–26. (In Russ.). URL: https://infokosmo.ru/file/article/16580.pdf

  2. Reznik S.V., Chubanov D.E. Large-sized transformable space antenna reflector made оf composite materials dynamic modeling process. RUDN Journal of Engineering Researches, 2018, vol. 19, no. 4, pp. 411–425. (In Russ.). DOI: 10.22363/2312-8143-2018-19-4-411-425
  3. Zhang Y., Yang G., Li N. et al. Dynamic analysis of the deployment for mesh reflector deployable antennas with the cable-net structure. Acta Astronautica, 2017, vol. 131, pp. 182–189. DOI:10.1016/j.actaastro.2016. 11.038

  4. Taigin V.B., Lopatin A.V. Design of the mirror antenna of a spacecraft with the ultralight high precision size-stable reflector. Spacecrafts and technologies, 2019, vol. 3, no. 3, pp. 121–131. (In Russ.). DOI: 10.26732/ 2618-7957-2019-3-121-131

  5. Taigin V.B., Lopatin A.V. The review of designs of mirror spacecraft antennas with solid high precision size stable reflector. Spacecrafts and technologies, 2021, vol. 5, no. 1 (35), pp. 14–26. (In Russ.). DOI: 10.26732/ j.st.2021.1.02

  6. Sinyavsky V.V., Smerdov A.A. Dynamic properties of the frame structure for mounting an electrical propulsion thruster into an orbital transfer vehicle. Space engineering and technology, 2018, no. 4 (23), pp. 40–48. (In Russ.). URL: https://www.energia.ru/ktt/archive/2018/04-2018/04-04.pdf

  7. Reznik S.V., Prosuntsov P.V., Novikov A.D. Prospects for increasing the dimensional stability and weight efficiency of mirror space antenna reflectors made of composite materials. BMSTU Journal of Mechanical Engineering, 2018, no. 1, pp. 71–83. (In Russ.). DOI: 10.18698/0536-1044-2018-1-71-83

  8. Taigin V.B., Lopatin A.V. Method of achievement the high accuracy of the shape of reflectors of mirror antennas of spacecraft. Spacecrafts and technologies, 2019, vol. 3, no. 4 (30), pp. 200–208. (In Russ.). DOI: 10.26 732/2618-7957-2019-4-200-208

  9. Prosuntsov P.V., Reznik S.V., Mikhailovsky K.V., Novikov A.D., Zaw Ye Aung. Study variants of hard CFRP reflector for intersatellite communication. IOP Conference Series: Materials Science and Engineering. 2016, vol. 153, no 1, article number 012012. DOI: 10.1088/1757- 899X/153/1/012012

  10. Reznik S.V., Prosuntsov P.V., Denisov O.V., Bondaletov D.N. et al. Elaboration of method for studying of thermal conductivity coefficient of anisotropic composites. Complex Systems: Control and Modeling Problems: XXI International Scientific Conference. Samara, 2019, pp. 592–595. (In Russ.).

  11. Novikov A.D., Reznik S.V., Denisov O.V. An experimental study to determine mechanical and thermophysical characteristics of thin-walled carbon plastic antenna reflector. BMSTU Journal of Mechanical Engineering, 2020, no. 3, pp. 84–91. (In Russ.). DOI: 10.18698/0536-1044-2020-3-84-91

  12. Reznik S.V., Prosuntsov P.V., Denisov O.V., Petrov N.M., Vonheong Lee. Raschetno-eksperimental’naya metodika opredeleniya teploprovodnosti kompozitsionnogo materiala korpusa nanosputnika [Nanosatellite body composite material thermal conductivity determination computational and theoretical me-thod]. RUDN Journal of Engineering Researches, 2017, no. 18(3), pp. 345–352. (In Russ.). DOI: 10.22363/2312-8143-2017-18-3-345-352.

  13. Alifanov О.М. Obratnie zadachi teploobmena [Inverse problems of heat transfer]. Мoscow: Mashinostroenie, 1988, 280 p. (In Russ.).

  14. Tikhonov А.N., Arsenin V.Ya. Metodi resheniya nekorrektnih zadach [Methods for solving incorrect problems]. Мoscow: Nauka, 1986, 288 p. (In Russ.).

  15. Alifanov О.М., Artukhin Е.А., Rumyantsev S.V. Extremalnie metodi resheniya nekorrektnih zadach [Extreme methods for solving incorrect problems]. Мoscow: Nauka, 1988, 288 p. (In Russ.).

  16. Yarishev N.A. Teoreticheskie metodi izmereniya temperaturi [Theoretical foundations of measurement of non-stationary temperature]. Leningrad: Energoatomiz dat, 1990, 256 p. (In Russ.).

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI