An experimental study of passive heat removal from the dry spent nuclear fuel storage chamber at the different parameters of environment


Аuthors

Kazyulin A. N.1, 2*, Yashchuk A. A.2

1. Mining and Chemical Complex, 53, Lenina str., Zheleznogorsk, Krasnoyarsk region, 662972, Russia
2. Tomsk State University, 36 Lenin Ave., Tomsk, Tomsk region, 634050, Russia

*e-mail: kandr@mail.ru

Abstract

Due to the transition of Russian nuclear power plants to the use of fuel with increased initial enrichment, it becomes necessary to accept spent nuclear fuel with higher heat generation for storage. To assess the possibility of receiving “hotter” spent nuclear fuel, relative to the one already in storage, a preliminary study of the passive heat removal from the storage is necessary. A convenient method of evaluation is a theoretical study using a computational model. The paper describes the results of an experimental study of the parameters at the control points of the VVER-1000 spent nuclear fuel dry storage chamber, depending on the environmental parameters at different seasons of the year.

Keywords:

natural convection, spent nuclear fuel, dry storage of spent nuclear fuel, heat release of spent nuclear fuel, heat removal

References

  1. Shubnov K.I. Deistvuyushchie i stroyashchiesya atomnye stantsii v Rossii, ikh printsip raboty [Operating and under construction nuclear power plants in Russia, their principle of operation]. Sovremennye problemy energetiki i ekologii: materialy dokladov i soobshchenii zaochnoi studencheskoi nauchno-prakticheskoi konferentsii 26 maya 2022 goda [Modern problems of power engineering and ecology: materials of reports and messages of extramural student scientific-practical conference (26 May 2022, Sevastopol)]. Ed by Yu.A. Omel’chuk. Sevastopol: Sevastopol’skii gosudarstvennyi universitet, 2022, pp. 26–33. (In Russ.).

  2. Kviatkovskii S.A., Mansurov O.A., Ptitsyn P.B. Technologies of power reactors SNF management. Moscow: Centre of Analytical R&D (CARD), Private Enterprise «Science and Innovations», State Atomic Energy Corporation Rosatom, 2021, 192 p. (In Russ.). DOI: 10.36535/0202-6120-2021-02-39-2021

  3. Kalinkin V.I. Obosnovanie metoda suhogo hranenija otrabotavshego jadernogo topliva atomnyh jelektrostancij s reaktorami RBMK-1000 i VVER-1000 [Justification of the method of dry storage of spent nuclear fuel of NPPs with RBMK-1000 and VVER-1000 reactors]. Ph.D. thesis. Saint Petersburg: Sankt-Peterburgskii gosudarstvennyi politekhnicheskii universitet, 2007, 172 p. (In Russ.).

  4. DeVoe R.R., Robb K.R., Skutnik S.E. Sensitivity analysis for best-estimate thermal models of vertical dry cask storage systems. Nuclear Engineering and Design, 2017, no. 320, pp. 282–297. DOI: 10.1016/j.nucengdes.2017.06.005

  5. Chang H.Y., Chen R.H., Lai C.M. Numerical simulation of the thermal performance of a dry storage cask for spent nuclear fuel. Energies, 2018, no. 11(1), p. 149. DOI: 10.3390/en11010149

  6. Tseng Y.-S., JWang J.-R., Tsai F.P., Cheng Y.-H., Shih C. Thermal design investigation of a new tube-typedry-storage system through CFD simulations. Annals of Nuclear Energy, 2011, no. 38, pp. 1088–1097. DOI: 10.1016/j.anucene.2011.01.001

  7. Herranz L.E., Penalva J., Feria F. CFD analysis of a cask for spent fuel dry storage: model fundamentals and sensitivity studies. Annals of Nuclear Energy, 2015, no. 76, pp. 54–62. DOI: 10.1016/j.anucene.2014.09.032

  8. Li J., Liu Y.Y. Thermal modeling of a vertical dry storage cask for used nuclear fuel. Nuclear Engineering and Design, 2016, no. 301, pp. 74–88. DOI: 10.1016/j.nucengdes.2016.01.008

  9. Poškas R., Šimonis V., Poškas P., Sirvydas A. Thermal analysis of CASTOR RBMK-1500 casks during long-term storage of spent nuclear fuel. Annals of Nuclear Energy, 2017, no. 99, pp. 40–46. DOI: 10.1016/j.anucene.2016.09.031

  10. Krainov A.Yu., Min’kov L.L., Seelev I.N., Shrager E.R. Numerical investigation of the air heat-mass transfer in the chamber of dry storage for spent nuclear fuel. Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2017, no. 47, pp. 75–86. (In Russ.). DOI: 10.17223/19988621/47/8

  11. Kazyulin A.N., Yashchuk A.A. Vlijanie meteorologycheskih parametrov na otvod tepla iz kamer suhogo hranilishha otrabotavshego jadernogo topliva [Influence of meteorological parameters on heat removal from dry storage chambers for spent nuclear fuel]. /I Vserossijskaya nauchnaya konferenciya s mezhdunarodnym uchastiem “Enisejskaja teplofizika – 2023” (28–31 marta 2023 goda, Krasnojarsk): tezisy dokladov [I All-Russian Scientific Conference with International Participation “Yenisei Thermophysics – 2023”]. Ed by D.V. Platonov. Krasnojarsk: Sibirskij federal’nyj universitet, 2023, pp. 273–275. (In Russ.).

  12. Koterov A.N., Ushenkova L.N., Zubenkova E.S., Kalinina M.V., Biryukov A.P., Lastochkina E.M., Molodtsova D.V., Vainson A.A. Sila svyazi. Soobshchenie 2. Gradatsii velichiny korrelyatsii [The power of communication. Message 2. Gradations of the magnitude of correlation]. Meditsinskaya radiologiya i radiatsionnaya bezopasnost’, 2019, vol. 64, no. 6, pp. 12–24. (In Russ.). DOI: 10.12737/1024-6177-2019-64-6-12-24

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI