On a temperature state forecasting and diagnosing method of spacecraft-oriented subsystems based on a series of comprehensive computational and natural experiments, and several examples of its application


Аuthors

Kotlyarov E. Y.*, Finchenko V. S.

Lavochkin Research and Production Association, NPO Lavochkin, , Khimki, Moscow region, Russia

*e-mail: evgeny-1@list.ru

Abstract

The article describes a method for thermal mathematical models building for the spacecraftoriented subsystems and their application for the design works accomplishing and following. They can be employed as well for selecting the spacecraft thermal control systems units and spacecraft thermal mode ensuring systems units with necessary characteristics, and setting up experiments with constituent parts of the system and the system as a whole in both intermediate and final versions. Various engineering techniques, including specially adapted, for thermo-technical computing and testing of the devices already incorporated or planned for application in the selected subsystem are being employed while the said method realization.

Keywords:

thermal mathematical model, comprehensive experiment, heat transfer unit, loop heat pipe, gas-liquid heat exchanger, Peltier element, mechanically pumped fluid loop, computational experiment

References

  1. Gerasimov Yu.F., Maidanik Yu.F., Shchegolev G.T., Kiselev V.M., Filippov G.A., Starikov L.G. Teplovaya truba [Heat pipe]: USSR copyright certificate № 485296 (1975).
  2. Fershtater Yu.G., Maydanik Yu.F., Kriterii vybora teplonositelya dlya “antigravitacionnykh” teplovykh trub [Termodinamicheskie issledovaniya metastabil’nykh szhidkostey]. Sbornik nauchnih trudov. AN SSSR Ural’sky nauchny centr, 1986, pp. 68–72. (In Russ.).
  3. Dolgirev Yu.G., Gerasimov Yu.F., Maydanik Yu.F., Kiseev V.M. Raschyot teplovoy truby s razdel’nymi kanalami dlya para i zshidkosti [Calculation of heat pipe with separate vapour and liquid channels]. Inzhenernofizicheskii zhurnal, 1978, vol. XXXIV, no. 6, pp. 988–993. (In Russ.).
  4. Mikhailov M.D. Stacionarnye temperatury pri poristom okhlaszhdenii [Stationary temperatures during porous cooling]. Inzhenerno-fizicheskii zhurnal, 1966, vol. XI, no. 2, pp. 264–265. (In Russ.).
  5. Isachenko V.P., Osipova V.A., Sukomel A.S. Teploperedacha. [Heat transfer]. Uchebnik dlya vuzov. Moscow: Energiya, 1975, 488 p.
  6. Goncharov K.A., Kotlyarov E.Yu., Smirnov F.Yu., Schlit. R.t, Beckmann K., Meyer R., Mueller R. Investigation of Temperature Fluctuations in Loop Heat Pipes. 24 International Conference for Environmental Systems (Friedrichshafen. Germany, June 20–23, 1994). #941577. 14 p.
  7. Orlov Alexei A., Goncharov Konstantin A., Kotliarov Evgeny Yu., Tyklina Tamara A., Ustinov Svyatoslav N., Maidanik Yuri F. The Loop Heat Pipe Experiment on Board The Granat Spacecraft. Proceedings of the Sixth European Symposium on Space Environmental Control Systems (Nordwjik, The Netherlands, 20–22 May, 1997). ESA SP-400. P. 341–353.
  8. Sasin V.Ya., Zelenov I.A., Zuev V.G. and Kotlyarov E.Yu. Mathematical Model of a Capillary Loop Heat Pipe with a Condenser-Radiator. 20 International Conference for Environmental Systems (Williamsburg, July 9–12, 1990). SAE Technical Paper Series. #901276. 10 p. URL: www.sae.org
  9. Jentung Ku, Jose Rodrigues. Low Frequency High Amplitude Temperature Oscillations in Loop Heat Pipe Operation. 33 International Conference for Environmental Systems (Vancouver, BC, Canada, 7–10 July, 2003). 2003-01-2386. 26 p. URL: www.sae.org
  10. Jentung Ku. Temperature Oscillations in Loop Heat Pipes – A Revisit. Spacecraft Thermal Control Workshop (El Segundo, California, March 20–22, 2018), 48 p.
  11. Amidieu M., Moschetti B., Kotlyarov E. Development of a Capillary Pumped Loop with High Pumping and Active Regulation. 25 International Conference for Environmental Systems (San-Diego, July 10–13, 1995). #951507. 9 p. URL: www.sae.org
  12. Zelenov I.A., Zuev V.G., Kotlyarov E.Yu., Serov G.P. Konturnaya teplovaya truba [Contour heat pipe]. Gospatent SSSR no. 1834470 (1995).
  13. Circuit de Transfer de Chaleur a Deux Phases: Franch Patent / Kotlyarov E.Yu., Serov G.P. No. 9613982, date de depot 15.11.1996. Bulletin 98/53, 31.12.1998.
  14. Kotlyarov E.Yu., Serov G.P. Tulin D.V., Goncharov K.A. Termoreguliruyushee ustroistvo na baze konturnoi teplovoy truby [Thermostatic regulating device based on a contour heat pipe]. Patent Rossiiskaya Federatsiya no. 2474780 (2013).
  15. Kotlyarov E.Yu., Serov G.P. Reguliruemaya konturnaya teplovaya truba [Adjustable contour heat pipe]. Patent Rossiiskaya Federatsiya no. 2757740 (2021).
  16. Finchenko V.S., Kotlyarov E.Yu., Ivankov A.A. Sistemy obespecheniya teplovykh rezhimov avtomaticheskikh mezhplanetnykh stantsij [Thermal control systems of interplanetary spacecrafts]. Ed by. V.V. Efanov, V.S. Finchenko. Khimki, Lavochkin Association, 2018, 400 p. (In Russ.).
  17. Voeten Raoul, Kotlyarov Evgeny, Raetz John E., Ueda Yukihiro. Mathematical Model of Life Science Glove-Box Thermal Control Sub-System (WVA) with using of EXCEL-BASIC. 34 International Conference for Environmental Systems (Colorado Springs, 19–22 July, 2004). #2004-01-2360. 11 p. URL: www.sae.org
  18. Kotlyarov Evgeny, Reuvers Richard, Patrick van Put, Tjiptahardja Tisna, Galouye-Merino Anne Sophie, Hugonnot Patrick, Daly Bernie. Modeling and Correlation of an Actively-Controlled Single Phase Mechanically-Pumped Fluid Loop. 37 International Conference for Environmental Systems (Chicago, IL, July, 2007). #2007-01-3122. 20 p. URL: www.sae.org
  19. Esatan engineeringmanual EM-ESATAN-056 Version 6.1, 1998. 212 p.
  20. Kotlyarov Evgeny, Peter de Crom, Voeten Raoul. Some Aspects of Peltier- Cooler Optimization Applied for the Glove Box Air Temperature Control. 36 International Conference for Environmental Systems (Norfolk, 17–20 July, 2006). #2006-01-2043. URL: www.sae.org
  21. Kotlyarov E.Yu., Tulin D.V., Finchenko V.S. Applicability analysis of heaters with a positive temperature coefficient in local thermal control systems of spacecraft equipment blocks. Thermal processes in engineering, 2020, vol. 12, no. 2, pp. 88–97. (In Russ.).
  22. Bugrova A.D., Kotlyarov E.Yu., Finchenko V.S. Metodika predvaritel’nogo analiza teplovogo rezhima pribornoi paneli posadochnogo lunnogo modulya. Chast’ 1. Ekspress-analiz temperaturnogo sostoyaniya pribornoi paneli [Methodology of preliminary analysis of the thermal condition of the instrument panel of the lunar landing module. Part 1: Rapid analysis of the instrument panel temperature state]. Vestnik NPO im. S.A. Lavochkina, 2021, no. 2, pp. 25–35. (In Russ.).
  23. Bugrova A.D., Kotlyarov E.Yu., Shabarchin А.F., Finchenko V.S. About the application of simplified mathematical models complex at the initial stage of the interplanetary spacecraft thermal design. Thermal processes in engineering, 2022, vol. 14, no. 4, pp. 146–160. (In Russ.).

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI