Temperature field strength on the graphene inclusions surface in composite with the ceramic matrix


Аuthors

Lavrov I. V., Bardushkin V. V.*, Yakovlev V. B.

Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, Moscow, Russia

*e-mail: bardushkin@mail.ru

Abstract

The article considers the problem of finding the temperature field strength at the inclusion boundary in the matrix composite from the matrix side. The authors obtained an expression for operator of the temperature field intensity concentration on the surface of anisotropic inclusions in the form of strongly compressed spheroids in matrix composite depending on a point position on the inclusion surface, inclusions volume fraction in the material, and orientation of the inclusion. These operators associated the fields on the inclusion surface on the matrix side to the average value of the temperature field strength in the composite sample. Based on the obtained expressions, model computations were performed for a composite with the Al2O3 matrix and inclusions from multilayer graphene. The values of the components and the temperature field strength modulus at the points on the edge of the inclusions on the matrix side were being computed at a fixed value of the applied temperature field strength at various aspect ratios of spheroids, modeling the shape of graphene inclusions, as well as at various angles between the direction of the applied field strength and the plane of rotation of spheroids. The article demonstrates that in the case of graphene multilayer inclusions at the points on their ribs, the field strength from the side of the ceramic matrix can be several tens fold higher than the applied field strength.

Keywords:

composite, matrix, graphene, inclusion, operators of temperature field strength concentration, generalized singular approximation

References

  1. 1. Nieto A., Bisht A., Lahiri D., Zhang C., Agarwal A. Graphene reinforced metal and ceramic matrix composites: a review. International Materials Reviews, 27 Oct. 2016, pp. 241–302. DOI: 10.1080/09506608.2016.1219481
  2. Porwal H., Grasso S., Reece M.J. Review of graphene– ceramic matrix composites. Advances in Applied Ceramics, 2013, vol. 112, no. 8, pp. 443–454. DOI: 10.1179/174367613X13764308970581
  3. Borrell A., Torrecillas R., Rocha V.G., Fernandez A. Effect of CNFs content on the tribological behaviour of spark plasma sintering ceramic–CNFs composites. Wear, 2012, vol. 274–275, pp. 94–99. DOI: 10.1016/j. wear.2011.08.013
  4. Sheinerman A.G., Krasnitskii S.A. Modelirovaniye vliyaniya aglomeratsii grafena na mehanicheskiye svoystva keramicheskih kompozitov s grafenom [Modeling of the Influence of Graphene Agglomeration on the Mechanical Properties of Ceramic Composites with Graphene]. Pisma v Zhurnal tehnicheskoy fiziki. 2021, vol. 47, iss. 17. pp. 3740. DOI: 10.21883/PJTF.2021.17. 51385.18844
  5. Kim H., Lee S.-M., Oh Y.-S., Yang Y.-H., Lim Y.S., Yoon D.H., Lee Ch., Kim J.Y., Ruoff R.S. Unoxidized Graphene/Alumina Nanocomposite: Fracture- and WearResistance Effects of Graphene on Alumina Matrix. Scientific Reports. 5 June 2014, vol. 4, 5176, pp. 1–10. DOI: 10.1038/srep05176
  6. Savenkov G.G., Konstantinov A.Yu., Kuznetsov A.V., Pakhomov M.A., Stolyarov V.V. Vliyaniye dobavok grafena na dinamicheskuyu prochnost i razrusheniye oksida alyuminiya pri udarnom nagruzhenii [Influence of graphene additives on dynamic strength and failure of alumina under shock loading]. Zhurnal tehnicheskoy fiziki, 2022, vol. 92, iss. 6, pp. 838844. (In Russ.). DOI: 10.21 883/JTF.2022.06.52513.47-22
  7. Stankovich S., Dikin D.A., Dommett G.H., Kohlhaas K.M., Zimney E.J., Stach E.A., Piner R.D., Nguyen S.T., Ruoff R.S. Graphene-based composite materials. Nature, 2006, vol. 442, iss. 20, pp. 282–286. DOI: 10.1038/nature04969
  8. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric field effect in atomically thin carbon films // Science. 2004. Vol. 306. Iss. 5696. P. 666–669. DOI: 10.1126/science.1102896
  9. Novoselov K.S. Graphen: materialy Flatlandii [Graphene: Materials in the Flatland] // Uspekhi fizicheskikh nauk. 2011. Vol. 181. No. 12. P. 12991311. (In Russ.). DOI: 10.3367/UFNr.0181.201112f.1299
  10. Bunch J.S., Van der Zande A.M., Verbridge S.S., Frank I.W., Tanenbaum D.M., Parpia J.M., Craighead H.G., McEuen P.L. Electromechanical resonators from graphene sheets. Science, 2007, vol. 315, iss. 5811, pp. 490–493. DOI: 10.1126/science.1136836
  11. Yan Zh., Nika D.L., Balandin A.A. Thermal properties of graphene and few-layer graphene: applications in electronics. IET Circuits, Devices & Systems, 2015, vol. 9, iss. 1, pp. 4–12. DOI: 10.1049/iet-cds.20 14.0093
  12. Tkachev S.V., Buslaeva E.Y., Gubin S.P. Graphen novyy uglerodnyy nanomaterial [Graphene a new carbon nanomaterial]. Neorganicheskiye materialy, 2011, vol. 47, no. 1, pp. 514. (In Russ.)
  13. Eletskii A.V., Iskandarova I.M., Knizhnik A.A., Krasikov D.N. Graphen: metody polucheniya I teplofizicheskiye svoystva [Graphene: fabrication methods and thermophysical propertie]. Uspekhi fizicheskikh nauk, 2011, vol. 181, no. 3, pp. 233268. (In Russ.). DOI: 10.3367/UFNr.0181.201103a.0233
  14. Kolesnikov V.I., Yakovlev V.B., Lavrov I.V., Sychev A.P., Bardushkin A.V. Raspredelenie ehlektricheskikh polei na poverkhnosti vklyuchenii v matrichnom kompozite [Distribution of Electric Fields on the Surface of Inclusions in a Matrix Composite]. Doklady Rossiiskoi akademii nauk. Fizika, tekhnicheskie nauki, 2023, vol. 513, pp. 34-40. DOI: 10.31857/S26867400 2306009315.
  15. Milton G. The Theory of Composites. Cambridge: Cambridge University Press, 2004, 719 p.
  16. Kartashov E.M., Kudinov V.A. Analiticheskie metody teorii teploprovodnosti i ee prilozhenii [Analytical methods of the theory of thermal conductance and its applications]. Moscow: Lenand, 2018, 1072 p. (In Russ.).
  17. Lykov A.V. Teoriya teploprovodnosti [Theory of thermal conductivity]. Moscow: Vysshaya shkola, 1967. 600 p. (in Russ.).
  18. Kartashov E.M. Novyye sootnosheniya dlya analiticheskih resheniy lokalno-neravnovesnogo teploobmena [New relations for analytical solution of the local nonequilibrium heat transfer]. Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2023, no. 6 (111), pp. 4–24. (In Russ.). DOI: 10.18698/18123368-2023-6-4-24
  19. Kartashov E.M. New energy effect in non-cylindrical domains with a thermally insulated moving boundary. Russian Technological Journal, 2023, vol. 11, no. 5, pp. 106–117. (In Russ.). DOI: 10.32362/2500-316X-202 3-11-5-106-117
  20. Benveniste Y. On the effective thermal conductivity of multiphase composites. Zeitschrift für angewandte Mathematik und Physik (ZAMP), 1986, vol. 37, pp. 696–713. DOI: 10.1007/BF00947917
  21. Benveniste Y., Miloh T. The effective conductivity of composites with imperfect thermal contact at constituent interfaces. International Journal of Engineering Science, 1986, vol. 24, no. 9, pp. 1537–1552.
  22. Lavrov I.V., Bardushkin V.V., Yakovlev V.B. Prediction of the effective thermal conductivity of composites with graphene inclusions. Thermal processes in engineering, 2023, vol. 15, no. 7, pp. 299–308. DOI: 10.34 759/tpt-2023-15-7-299-308 (In Russ.).
  23. Zarubin V.S., Kuvyrkin G.N., Savelyeva I.Y. Matematicheskaya model’ teploperenosa v sferoplastike [A Mathematical Model of Heat Transfer in Spheroplastic]. Matematika i matematicheskoye modelirovaniye. Bauman MSTU. Elektronnyi jurnal, 2016, no. 4, pp. 42–58. (In Russ.). DOI: 10.7463/mathm.0416.0846276 (In Russ.).
  24. Zarubin V.S., Zimin V.N., Kuvyrkin G.N., Savelyeva I.Y., Novozhilova O.V. Two-sided estimate of effective thermal conductivity coefficients of a textured composite with anisotropic ellipsoidal inclusions. Zeitschrift für angewandte Mathematik und Physik (ZAMP), 2023, vol. 74, iss. 4 (139). DOI: 10.1007/s00 033-023-02039-0
  25. Stroud D. Generalized effective-medium approach to the conductivity of an inhomogeneous material. Physical Review B, 1975, vol. 12, no. 8, pp. 3368–3373. DOI: 10.1103/PhysRevB.12.3368
  26. Kolesnikov V.I., Yakovlev V.B., Bardushkin V.V., Lavrov I.V., Sychev A.P., Yakovleva E.N. O metode analiza raspredeleniy lokalnyh elektricheskih poley v kompozitsionnom materiale [A Method of Analysis of Distributions of Local Electric Fields in Composites]. Doklady Akademii nauk. 2016. Vol. 467, no. 3, pp. 275–279. (In Russ.). DOI: 10.7868/S0869565216090097
  27. Shermergor T.D. Teoriya uprugosti mikroneodnorodnykh sred [Micromechanics of inhomogeneous medium]. Moscow: Nauka, 1977, 399 p. (In Russ.).
  28. Lavrov I.V., Bardushkin V.V., Sychev A.P., Yakovlev V.B., Kochetygov A.A. O vychislenii effectivnoy teploprovodnosti teksturirovannyh matrichnyh kompozitov s vysokoy ob’yomnoy doley vklyucheniy [On calculation of the effective thermal conductivity of textured matrix composites with high volume fraction of inclusions]. Ekologicheskiy vestnik naucnyh centrov Chernomorskogo ekonomicheskogo sotrudnichestva, 2018, vol. 15, no. 3, pp. 92–101. (In Russ.). DOI: 10.31429/ vestnik-15-3-92-101. (In Russ.).
  29. Bohren C.F., Huffman D.R. Pogloshchenie i rasseyanie sveta malymi chastitsami [Absorption and Scattering of Light by Small Particles]. Moscow: Mir, 1986, 660 p.
  30. Lavrov I.V. Dielektricheskaya pronitsayemost’ kompozitsionnykh materialov s teksturoy: ellipsoidal’nyye anizotropnyye kristallity [Permittivity of composite materials with texture: ellipsoidal anisotropic crystallites]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva, 2009, no. 1, pp. 52–58. (In Russ.).
  31. Fizicheskie velichiny: spravochnik [Physical Quantities: A Handbook]. Ed. by I.S. Grigor’ev, E.Z. Meilikhov. Moscow: Energoatomizdat, 1991, 1232 p. (In Russ.).

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI