Possibilities of the kinetic method for modelling the thermal field of fixed bodies in a rare plasma


Аuthors

Cherepanov V. V.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: vvcherepanov@yandex.ru

Abstract

The paper completes a small series of works devoted to methods for modeling the process of formation of a thermal field in the vicinity of motionless bodies in a rarefied plasma. The work uses the previously presented mathematical model of the relaxation process of the region of disturbance introduced into a collisionless ionized gas by a charged ball or cylinder. The curvilinear system of nonholonomic coordinates was selected to minimizing the phase space of the kinetic problem, that it helped one to increase the efficiency of the corresponding numerical methods. Key details of the implementation of the model and solution method are revealed. Using the example of solving the problem for a ball, the presence of significant nonequilibrium in the particle distribution function in the disturbed zone is shown. An analysis is given of the evolution of the behavior of gas characteristics in the disturbed zone, the thermal field in the vicinity of the body, and thermal loads on its surface. The mechanism of heating for charged attracting particles in the vicinity of spherical bodies has been established and described, and notable features of the formation of heat flow on spherical body in plasma have been analyzed.

Keywords:

heat and mass transfer, rarefied plasma, absorbing charged ball, disturbed zone, kinetic problem, self-consistent field, phase space, nonholonomic coordinates, distribution function, macroparameters, evolution and stationary state

References

  1. Chapman S., Cowling T.G. The mathematical theory or non – uniform gases. 3rd ed. Cambridge: Cambridge University Press, 1970, 512 p.
  2. Klimontovich Yu.L. Kineticheskaya teoriya elektromagnitnikh processov [The kinetic theory of electromagnetic processes]. Moscow: Nauka, 1980, 374 p. (In Russ.).
  3. Artcimovich A.A., Sagdeev R.Z. Fizika plazmi dlya fizikov [Plasma physics for physicists]. Moscow: Atomizdat, 1979, 320 p. (In Russ.).
  4. Alpert Ya.L., Gurevich A.V., Pitaevskij L.P. Iskusstvennie sputniki v razrejennoj plazme [Artificial satellites in a rarefied plasma]. Moscow: Nauka, 1964, 384 p. (In Russ.).
  5. Cherepanov V.V. On modeling thermal disturbances introduced into rarefied plasma by stationary canonical bodies. Thermal processes in engineering, 2023, vol. 15, no. 10, pp. 448–455. (In Russ.).
  6. Hockney R.G., Eastwood J.W. Computer simulation using particles. Bristol, Philadelphia: IOP Publishing, 1988, 568 p.
  7. Vlasov A.A. Statisticheskie funkcii raspredeleniya [Statistical distribution functions]. Moscow: Nauka, 1966, 356 p. (In Russ.).
  8. Potter D. Computational Physics. London: John Wiley & Sons, 1973, 304 p.
  9. Godunov S.K., Ryabenkij V.S. Raznostnye skhemy. Vvedenie v teoriju [Difference schemes. Introduction to theory]. Moscow: Nauka, 1977, 440 p. (In Russ.).
  10. Cherepanov V.V. On the solution of some nonlinear elliptic equation for thermal applications. Thermal processes in engineering, 2024, vol. 16, no. 2, pp. 55–67. (In Russ.).
  11. Golub A.P., Popel S.I. Nestatcionarnye processy pri formirovanii pylevoi plazmy u poverkhnosti sputnica Marsa – Deimosa [Non – stationary processes during the formation of dusty plasma at the surface of Deimos, the satellite of Mars]. Fizika plazmy, 2021, vol. 47, no. 8, pp. 741–747. URL: https://doi.org/10.31857/S0367292121 070088
  12. Vaulina O.S. Pereraspredelenie kineticheskoj energii v trekhmernykh oblakakh zariyajennykh pylevykh chastic [Redistribution of kinetic energy in three-dimensional clouds of charged dust grains]. Fizika plazmy, 2021, vol. 48, no. 1, pp. 36–40. URL: https://doi.org/10.31857/ S0367292122010140
  13. Ignatov A.M. Vliyanie nevzaimnykh sil na ustoichivost pilevikh klasterov [Effect of nonreciprocal forces on the stability of dust clusters]. Fizika plazmy, 2021, vol. 47, no. 5, pp. 391–400. URL: https://doi.org/10.31857/S036 7292121050024
  14. Popel S.I., Zelenyi L.M., Zakharov A.V. Pylevaya plazma v solnechnoj sisteme: bezatmosfernye kosmicheskiye tela [Dusty plasma in the solar system: celestial bodies without atmosphere]. Fizika plazmy, 2022, vol. 49, no. 8, pp. 813–820. URL: https://doi.org/10.31857/S03672921 23600437
  15. Begrambekov L.B., Grunin A.V. Mnogofunkcionalnyi zond dlya issledovaniya vzaimodeistviya «plazma – pervaya stenka» v tokamake TRT [Multifunctional probe for studying plasma-first wall interactions at the TRT tokamak]. Fizika plazmy, 2022, vol. 48, no. 12, pp. 1244–1252. URL: https://doi.org/10.31857/S036729 212260056X
  16. Kozhevnikov V.Yu. et al. Kineticheskaya model vakuumnogo rasshireniya plazmy v cilindricheskom promezhutke [Kinetic model of vacuum plasma expansion in a cylindrical gap]. Fizika plazmy, 2023, vol. 49, no. 11, pp. 1170–1177. URL: https://doi.org/10.31857/S036729 2123600607
  17. Adamovich I. et al. The 2022 Plasma Roadmap: low temperature plasma science and technology. Journal of Physics D: Applied Physics, 2022, vol. 55, no. 37, paper 373001, AIP Publishing. URL: https://doi.org/10.10 88/1361-6463/ac5e1c
  18. Hartzell C.M. et al. Payload concepts for investigations of electrostatic dust mothion on the lunar surface. Acta Astronautica, 2023, vol. 207, no. 6, pp. 89–105. URL: https://doi.org/10.1016/j.actaastro.2023.02.032
  19. Bronold F.X., Rasek K., Fehske H. Electron microphysics at plasma-solid interfaces. Journal of Applied Physics, 2020, vol. 128, paper 180908. AIP Publishing. URL: https://doi.org/10.1063/5.0027406

mai.ru — informational site of MAI

Copyright © 2009-2025 by MAI