Influence of well intensifiers and their shape on efficiency of tubular air-air heat exchangers


Аuthors

Agapov A. V.*, Ionov A. V.**

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: agapov_andrey@icloud.com
**e-mail: woln@mail.ru

Abstract

The influence of TLJT-relief (well flow intensifiers) on the efficiency of air-air heat exchanger is considered. The design of air-air heat exchanger tubes with TLJT-relief at low efficiency sections was designed and the hydrogas-dynamic calculation of these tubes was carried out. The calculation results were compared with the results obtained from the calculation of unintensified tubes. At comparison the increase of heat transfer at insignificant increase of hydraulic resistance inside the tubes and, consequently, expediency of application of the given kind of intensifiers in design of tubes of air-air heat exchanger is revealed. At further researches the optimum form of wells in TLJT-relief is defined and dependences of influence of a form of wells on decrease in temperature of hot coolant and on increase in hydraulic resistance are received. The obtained data can be used in the design of tubular airair heat exchangers.

Keywords:

air-air heat exchanger, TLJT-relief, intensifiers, mathematical modelling

References

  1. Kalinin E.K., Dreitser G.A., Kopp I.Z., Miakochin A.S. Effektivnye poverkhnosti teploobmena [Effective heat exchange surfaces]. Moscow: Energoatomizdat, 1998, 408 p.
  2. Dakhin S.V., Anoshin I.S., Prigozhin A.A. Primenenie effekta samoorganizatsii smercheobraznykh strui pri energosberezhenii v teploobmennom oborudovanii [Application of the effect of self-organisation of tornado-like jets for energy saving in heat-exchange equipment]. Voronezh, 2015.
  3. Gortyshov Yu.F., Olimpiev V.V. Teploobmennye apparaty s intensifitsirovannym teploobmenom [Heat exchangers with intensified heat exchange]. Kazan, 1999, 175 p.
  4. Dudarovskaia O.G., Dolgova A.N. Intensifikatsiia teplootdachi v kanalakh s razlichnymi intensifikatorami [Intensification of heat transfer in channels with different intensifiers]. Mezhdunarodnyi zhurnal prikladnykh i fundamentalnykh issledovanii, 2018, no. 11, pp. 44–47.
  5. Ionov A.V., Kartovitskii L.L., Marchukov E.Yu., Terentev V.V., Iakovlev A.A. Sovremennye podkhody k tekhnologii izgotovleniia lopatok ploskoi reshetki s TLJT-relefom poverkhnosti dlia provedeniia eksperimentalnykh issledovanii [Modern approaches to the manufacturing technology of flat grating blades with TLJT surface relief for experimental studies]. Nauchno-tekhnicheskii vestnik Povolzhia, 2011, no. 6, pp. 172–176.
  6. Khabibullin I.I. Intensifikatsiia teploobmena dvukhpolostnymi diffuzornymi vyemkami: dis. … kand. tekhn. nauk [Heat transfer intensification by double-cavity diffuser recesses]. Kazan, 2016, 124 p.
  7. Laptev A.G., Nikolaev N.A., Basharov M.M. Metody intensifikatsii i modelirovaniia teplomassoobmennykh protsessov [Methods of intensification and modelling of heat and mass transfer processes]. Moscow, 2011, 335 p.
  8. Frantsuzov M.S. Razrabotka metoda otsenki effektivnosti intensifikatsii konvektivnogo teploobmena v kanalakh: diss. … kand. tekhn. nauk [Development of a method for evaluating the efficiency of convective heat transfer intensification in channels]. Moscow, 2022, 207 p.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI