Decentralized spacecraft thermal stabilization system


Аuthors

Buntov M. V.*, Semena N. P.**, Gamkov D. M.***, Serbinov D. V.****, Pristash A. M.*****, Lipilin V. A.******, Gurova E. B.*******

Space Research Institute of the Russian Academy of Sciences , 84/32, Profsoyuznaya str, Moscow, 117997, Russia

*e-mail: buntov@cosmos.ru
**e-mail: semena@cosmos.ru
***e-mail: danila_gamkov@cosmos.ru
****e-mail: serbinov@cosmos.ru
*****e-mail: pristash1973@mail.ru
******e-mail: lipilin@cosmos.ru
*******e-mail: egurova@cosmos.ru

Abstract

A decentralized active thermal control system for a spacecraft (ATCS), consisting of selfregulating heating elements (SRHE), is presented. This system, in comparison with the classical centralized system with a single control unit, has higher reliability due to the distribution of the function of controlling the thermal mode of the thermal stabilization object over many independent elements. The inverse proportionality between the heat generated by the SRHE and its temperature, necessary for selfregulation, is provided by the thermal and electrical connection of two transistors - a temperature meter and a heat flow generator. Thermal mathematical and experimental modeling of a three-element decentralized ATCS based on the SRHE demonstrated the performance of the system under different variable thermal conditions and the correctness of the mathematical model proposed to describe the thermal
state of such a system.

Keywords:

proportional controller, thermal systems with feedback, thermal mathematical modeling, thermophysical experiment, spacecraft thermal control

References

  1. Semena N.P. The Importance of Thermal Modes of Astrophysical Instruments in Solving Problems of ExtraAtmospheric Astronomy. Cosmic Research, 2018, vol. 56, no. 4, pp. 293–305. URL: https://doi.org/10.11.34/S0010952518040032.
  2. Astrom К., Hagglund T. PID Controllers: Theory, Design and Tuning. Instrument Society of America. Research Triangle Park, North Carolina, 1995, 343 P.
  3. Kozlov L. V., Nusinov M. D., Akishin A. I. Modelirovanie teplovykh rezhimov kosmicheskogo apparata i okruzhayushchei ego sredy [Modeling of thermal conditions of a spacecraft and its environment]. Moskva, Mashinostroenie Publ., 1971, 380 p.
  4. Semena N.P., Serbinov D.V. Matematicheskaya interpretatsiya teplovogo ehksperimenta, imitiruyushchego usloviya kosmicheskogo prostranstva [Mathematical interpretation of a thermal experiment simulating cosmic space conditions]. Teplovye Protsessy v Tekhnike [Thermal Processing In Engineering], 2016, vol. 8. no 9, pp. 423–431.
  5. Denisenko V.V. PID-regulyatory: printsipy postroeniya i modifikatsii [PID-controllers: principles of construction and modification]. Sovremennye Tekhnologii Avtomatizatsii [STA Modern Automation Technologies], 2006, vol. 4, pp. 66–74.
  6. Semena N.P., Dobrolenskiy Yu.S., Serbinov D.V., Vyazovetskiy N.A., Martynovich F.G. Thermal Conductivity of Multilayer Insulation in the Martian Atmosphere. Instruments and Experimental Techniques, 2024, vol. 67, no. 1, pp. 132–142, URL: https://doi.org/10.11.34/S0020441224700258

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI