Study of acoustic and resonant phenomena in steam-generating systems of marine nuclear power plant


Аuthors

Mitrofanova O. V.*, Starovoitov N. A.**

National Research Nuclear University MEPhI, Moscow, Russia

*e-mail: omitr@yandex.ru
**e-mail: starovoitovnik@yandex.ru

Abstract

The work is devoted to the study of the influence of transient flow regimes in pipe systems of marine nuclear power plants (NPP) on the excitation of acoustic oscillations leading to resnance effects accompanied by the phenomenon of flow limitation corresponding to the swirling flow crisis. The designs of modern NPPs with block and integral layouts are considered. Numerical modeling examples show that conditions for the formation of large-scale vortex formations may arise in some sections of the thermal-hydraulic tract of marine NPPs. The experimental studies performed allowed us to identify the conditions for the development of resonance effects during vortex generation of acoustic oscillations in the frequency range of acoustic standing waves (ASW). It is shown that the maximum flow rate of the medium corresponds to the condition for the implementation of the swirling flow crisis mode and is the main parameter determining the development of resonance phenomena

Keywords:

Marine nuclear power plants, hydrodynamics, vortex structures, swirling flow crisis, physical and mathematical modeling, experimental studies, acoustic oscillations, acoustic standing waves, resonance effects

References

  1. Shtrek A.A. Current trends and challenges for the designing of arctic cargo veccels // Russian Arctic. 2019.  №5. P. 30–35. DOI: 10.24411/2658-4255-2019-10054.
  2. Filchuk K.V., Korobov V.B., Yulin A.V., Sheveleva  T.V. Influence of climate changes on navigation and de velopment of the continental shelf in the Russian Arctic  seas // Russian Arctic. 2022. № 17. P. 21–33. DOI:  10.24412/2658-4255-2022-2-21-33
  3. Belyaev V.M., Veshnyakov K.B., Zhukovsky V.G.,  Kudinovich I.V., Pakhomov A.N., Ryazantseva O.V.,  Suteeva A.Zh., Chesnokov Yu.N., Shklyarov N.V.  Nuclear powerplants for advanced icebreakers based on  standardized equipment // Transactions of the Krylov  shipbuilding research institute. 2015. № 89(373). P. 7–20.
  4. Korolev V.I. Analysis of thermohydraulic characteristics of steam generator cassettes of the RITM 200 reactor  plants of the universal nuclear icebreakers. // Vestnik  Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 14.5 (2022): 759–774.  DOI: 10.21821/2309-5180- 2022-14-5-759-774
  5. Zverev D.L., Fadeev Y.P., Pakhomov A.N.,  Galitskikh V.Y., Polunichev V.I., Veshnyakov K.B.,  Kabin S.V., Turusov A.Y. Reactor Installations for Nuclear Icebreakers: Origination Experience and Current  Status // Atomic Energy. 2020. Vol. 129, No. 1. P. 18–26. DOI 10.1007/s10512-021-00706-x
  6. Korolev V.I. Analysis of new technical solutions for the  RITM-200 reactor plant in the project 22220 of universal  nuclear icebreakers. // Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 14.6 (2022): 945–960. DOI: 10.21821/2309- 5180-2022-14-6-945-960
  7. Novikov I.I., Skobelkin V.I., Abramovich G.N., Klyachko L.A. Zakonomernost' raskhoda zhidkosti v zakruchennom potoke (effekt maksimal'nogo raskhoda zakruchennogo potoka zhidkosti). Otkrytie №389. 18.10.1990 g.
  8. Novikov I.I. Termodinamika: Uchebnoe posobie dlya  studentov energomashinostroitel'nyh i teplotekhnicheskih  special'nostej vuzov. M.: Mashinostroenie. 1984. 592 p.
  9. Mitrofanova O.V., Ivlev O.A. Current thermophysical  research in order to improve shipboard nuclear power in stallations // Marine intellectual technologies. 2023. № 4  part 1, P. 85–94. DOI: 10.37220/MIT.2023.62.4.011
  10. Mitrofanova O.V., Ivlev O.A., Fedorinov A.V. The  effect of vortex formation on the operability of pipe  systems of steam generators of marine nuclear power  installations, Marine intellectual technologies. 2023.  № 4 part 1, P. 95–102. DOI: 10.37220/MIT.2023. 62.4.012
  11. Mitrofanova O.V., Fedorinov A.V. Modeling of hydro dynamics and heat transfer in channels of steam generating systems of ship nuclear power installations of an integral type // Teplofizika vysokih temperatur. 2023. Vol. 61.  N. 4. P. 625–631. DOI: 10.31857/S0040364423040117
  12. Barinov A.A. Raschetno-eksperimental'noe modelirovanie  nestacionarnyh processov smesheniya potokov teplonositelya v perspektivnyh YaEU dlya AES maloj moshchnosti // A.A. Barinov: dis. … kand. tekh. nauk. N.N. 2020. 192 p.
  13. Proskuryakov K.N., Fedorov A.I., Zaporozhets M.V.,  Dyatlovsky A.A., Huseynov V.A. Methods and algo rithms identification of sources acoustic standing wave  in the primary circuit of NPP with WWER-440// Global  Nuclear Safety. 2015. №3(16). P. 77–84.
  14. Proskuryakov, K. N. The digital acoustic model of a pressurized water reactor // Thermal engineering. 2021. Vol. 68,  No. 9. P. 673-678. DOI 10.1134/S0040601521090068
  15. Proskuryakov K.N., Anikeev A.V., Afshar E. Verification of a reactor’s digital acoustic model in the startup and  nominal operation modes of NPPs equipped with VVER  reactors // Thermal engineering. 2021. № 11. P. 35–42.  DOI: 10.1134/S0040601521100049
  16. Proskuryakov K.N., Khvostova M.S., Ismail R.M.,  Yakovlev K.A. Digital acoustic model of an NPP pressurizer with WWER. // Global Nuclear Safety.  2023.48(3). P. 51–61. DOI: 10.26583/gns-2023-03-05
  17. Proskuryakov K.N., Ismail R.M., Yakovlev K.A., Pirogov I.N., Sivakov N.I. Development of a digital  acoustic model of the NPP pressurizer // Bezopasnost'  yadernoi energetiki: tezisy dokladov XIX Mezhdunarodnoi nauchno-prakticheskoi konferentsii, Volgodonsk, 06–07 iyunya 2023 goda. 2023. P. 128–131.
  18. Golovin A.N., Shorin V.P. Gasiteli kolebanii dlya  gidravlicheskikh sistem. // Samara: Izd-vo Samarskogo  nauchnogo Tsentra RAN. 2005. 168 p.
  19. Mitrofanova, O. V. On the structural similarity of stable  forms of spiral-vortex motion // Journal of engineering  physics and thermophysics. 2017. Vol. 90, No. 5.  P. 1119–1130. DOI 10.1007/s10891-017-1666-y
  20. Pozdeeva I.G. Issledovanie gidrodinamiki i mekhanizmov generatsii akusticheskikh kolebanii v slozhnykh  vikhrevykh techeniyakh. // I.G. Pozdeeva: dis. … kand.  tekhn. nauk. Moskva: NIYaU MIFI. 2019. 117 p.
  21. Mitrofanova O.V., Pozdeeva I.G. Investigation of the  acoustic oscillation self-adjustment mechanism in impinging swirling flows // Fluid Dynamics. 2015. Vol. 50,  No. 5. P. 646-654. DOI 10.1134/S001546281505006.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI