Аuthors
Mitrofanova O. V.*,
Starovoitov N. A.**
National Research Nuclear University MEPhI, Moscow, Russia
*e-mail: omitr@yandex.ru
**e-mail: starovoitovnik@yandex.ru
Abstract
The work is devoted to the study of the influence of transient flow regimes in pipe systems of marine nuclear power plants (NPP) on the excitation of acoustic oscillations leading to resnance effects accompanied by the phenomenon of flow limitation corresponding to the swirling flow crisis. The designs of modern NPPs with block and integral layouts are considered. Numerical modeling examples show that conditions for the formation of large-scale vortex formations may arise in some sections of the thermal-hydraulic tract of marine NPPs. The experimental studies performed allowed us to identify the conditions for the development of resonance effects during vortex generation of acoustic oscillations in the frequency range of acoustic standing waves (ASW). It is shown that the maximum flow rate of the medium corresponds to the condition for the implementation of the swirling flow crisis mode and is the main parameter determining the development of resonance phenomena
Keywords:
Marine nuclear power plants, hydrodynamics, vortex structures, swirling flow crisis, physical and mathematical modeling, experimental studies, acoustic oscillations, acoustic standing waves, resonance effects
References
- Shtrek A.A. Current trends and challenges for the designing of arctic cargo veccels // Russian Arctic. 2019. №5. P. 30–35. DOI: 10.24411/2658-4255-2019-10054.
-
Filchuk K.V., Korobov V.B., Yulin A.V., Sheveleva T.V. Influence of climate changes on navigation and de velopment of the continental shelf in the Russian Arctic seas // Russian Arctic. 2022. № 17. P. 21–33. DOI: 10.24412/2658-4255-2022-2-21-33
-
Belyaev V.M., Veshnyakov K.B., Zhukovsky V.G., Kudinovich I.V., Pakhomov A.N., Ryazantseva O.V., Suteeva A.Zh., Chesnokov Yu.N., Shklyarov N.V. Nuclear powerplants for advanced icebreakers based on standardized equipment // Transactions of the Krylov shipbuilding research institute. 2015. № 89(373). P. 7–20.
-
Korolev V.I. Analysis of thermohydraulic characteristics of steam generator cassettes of the RITM 200 reactor plants of the universal nuclear icebreakers. // Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 14.5 (2022): 759–774. DOI: 10.21821/2309-5180- 2022-14-5-759-774
-
Zverev D.L., Fadeev Y.P., Pakhomov A.N., Galitskikh V.Y., Polunichev V.I., Veshnyakov K.B., Kabin S.V., Turusov A.Y. Reactor Installations for Nuclear Icebreakers: Origination Experience and Current Status // Atomic Energy. 2020. Vol. 129, No. 1. P. 18–26. DOI 10.1007/s10512-021-00706-x
-
Korolev V.I. Analysis of new technical solutions for the RITM-200 reactor plant in the project 22220 of universal nuclear icebreakers. // Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 14.6 (2022): 945–960. DOI: 10.21821/2309- 5180-2022-14-6-945-960
-
Novikov I.I., Skobelkin V.I., Abramovich G.N., Klyachko L.A. Zakonomernost' raskhoda zhidkosti v zakruchennom potoke (effekt maksimal'nogo raskhoda zakruchennogo potoka zhidkosti). Otkrytie №389. 18.10.1990 g.
-
Novikov I.I. Termodinamika: Uchebnoe posobie dlya studentov energomashinostroitel'nyh i teplotekhnicheskih special'nostej vuzov. M.: Mashinostroenie. 1984. 592 p.
-
Mitrofanova O.V., Ivlev O.A. Current thermophysical research in order to improve shipboard nuclear power in stallations // Marine intellectual technologies. 2023. № 4 part 1, P. 85–94. DOI: 10.37220/MIT.2023.62.4.011
-
Mitrofanova O.V., Ivlev O.A., Fedorinov A.V. The effect of vortex formation on the operability of pipe systems of steam generators of marine nuclear power installations, Marine intellectual technologies. 2023. № 4 part 1, P. 95–102. DOI: 10.37220/MIT.2023. 62.4.012
-
Mitrofanova O.V., Fedorinov A.V. Modeling of hydro dynamics and heat transfer in channels of steam generating systems of ship nuclear power installations of an integral type // Teplofizika vysokih temperatur. 2023. Vol. 61. N. 4. P. 625–631. DOI: 10.31857/S0040364423040117
-
Barinov A.A. Raschetno-eksperimental'noe modelirovanie nestacionarnyh processov smesheniya potokov teplonositelya v perspektivnyh YaEU dlya AES maloj moshchnosti // A.A. Barinov: dis. … kand. tekh. nauk. N.N. 2020. 192 p.
-
Proskuryakov K.N., Fedorov A.I., Zaporozhets M.V., Dyatlovsky A.A., Huseynov V.A. Methods and algo rithms identification of sources acoustic standing wave in the primary circuit of NPP with WWER-440// Global Nuclear Safety. 2015. №3(16). P. 77–84.
-
Proskuryakov, K. N. The digital acoustic model of a pressurized water reactor // Thermal engineering. 2021. Vol. 68, No. 9. P. 673-678. DOI 10.1134/S0040601521090068
-
Proskuryakov K.N., Anikeev A.V., Afshar E. Verification of a reactor’s digital acoustic model in the startup and nominal operation modes of NPPs equipped with VVER reactors // Thermal engineering. 2021. № 11. P. 35–42. DOI: 10.1134/S0040601521100049
-
Proskuryakov K.N., Khvostova M.S., Ismail R.M., Yakovlev K.A. Digital acoustic model of an NPP pressurizer with WWER. // Global Nuclear Safety. 2023.48(3). P. 51–61. DOI: 10.26583/gns-2023-03-05
-
Proskuryakov K.N., Ismail R.M., Yakovlev K.A., Pirogov I.N., Sivakov N.I. Development of a digital acoustic model of the NPP pressurizer // Bezopasnost' yadernoi energetiki: tezisy dokladov XIX Mezhdunarodnoi nauchno-prakticheskoi konferentsii, Volgodonsk, 06–07 iyunya 2023 goda. 2023. P. 128–131.
-
Golovin A.N., Shorin V.P. Gasiteli kolebanii dlya gidravlicheskikh sistem. // Samara: Izd-vo Samarskogo nauchnogo Tsentra RAN. 2005. 168 p.
-
Mitrofanova, O. V. On the structural similarity of stable forms of spiral-vortex motion // Journal of engineering physics and thermophysics. 2017. Vol. 90, No. 5. P. 1119–1130. DOI 10.1007/s10891-017-1666-y
-
Pozdeeva I.G. Issledovanie gidrodinamiki i mekhanizmov generatsii akusticheskikh kolebanii v slozhnykh vikhrevykh techeniyakh. // I.G. Pozdeeva: dis. … kand. tekhn. nauk. Moskva: NIYaU MIFI. 2019. 117 p.
-
Mitrofanova O.V., Pozdeeva I.G. Investigation of the acoustic oscillation self-adjustment mechanism in impinging swirling flows // Fluid Dynamics. 2015. Vol. 50, No. 5. P. 646-654. DOI 10.1134/S001546281505006.