The efficiency of using functional coatings in aircraft’s passive thermal protection systems analysis


Аuthors

Norenko N. A.*, Agishev R. Y., Ermolaev A. Y.

Toropov Machine-Building Design Bureau "Vimpel", 90, Volokolamskoe shosse, Moscow, 125424, Russia

*e-mail: k.norenko28@gmail.com

Abstract

The article considers the possibility of using a functional coating based on zirconium dioxide (ZrO2) as an external heat-protective coating of a high-speed aircraft with an intra-atmospheric application zone. An engineering calculation simulating the thermal effect caused by aerodynamic heating on the aircraft hardware compartment with an external heat-protective coating based on ZrO2 with different percentages of porosity was executed. The calculation results allowed us to draw a conclusion about the effectiveness of this thermal protection method

Keywords:

thermal protection of aircraft, external thermal protection coating, zirconium dioxide, highspeed aircraft

References

  1. Grebenyuk ON, Salenkov VS. Study of titanium intermetallides oxidation at operating temperatures. Tekhnologiya legkih splavov. 2010;(2):29–33. (In Russ.).
  2. Kovalev VL. Heterogeneous catalytic processes in aerodynamics. Moscow: Fizmatlit; 2002 (In Russ.).
  3. Astapov AN, Terent'eva VS. Overview of domestic developments in the field of protection of carboncontaining materials from gas corrosion and erosion in high-speed plasma flows. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsionalnye pokrytiya. 2014;(4):50–70. (In Russ.).
  4. Elizarova YuA, Zakharov AI. High-temperature protective coatings for functional purposes. Novye ogneupory, 2020;(10):52–60. (In Russ.).
  5. Yang YZ, Yang JL, Fang DN. Research Progress on Thermal Protection Materials and Structures of Hypersonic Vehicles. Applied Mathematics and Mechanics. 2008;29(1):51–60.
  6. Ermolenko IN, Ulyanova TM, Vitiaz PA. Fibrous hightemperature ceramic materials. Moscow: Nauka i tekhnika; 1991. (In Russ.).
  7. Tsareva IN, Berdnik OB, Krivina LA et al. On the issue of strength properties of zirconium dioxide coating of increased thickness. Problemy prochnosti i plastichnosti. 2021:83(3);265–274. (In Russ.). DOI: 10.32326/18149146-2021-83-3-265-275
  8. Guseinov AB, Trusov VN, Polunin SP. Analysis of problems in creating hypersonic vehicles. Vestnik Moskovskogo aviatsionnogo instituta. 2014;21(3):53–62. (In Russ.).
  9. Fedorov PP, Yarotskaya EG. Zirconium dioxide. Review. Kondensirovannye sredy i mezhfaznye granitsy. 2021;23(2): 169–187. (In Russ.). DOI: 10.17308/kcmf.2021.23/3427
  10. Loshchinin YuV, Budinovskii SA, Razmakhov MG. Thermal conductivity of heat-protective rare-earth oxide doped ZrO2 – Y2O3 coatings obtained by magnetron sputtering. Aviatsionnye materialy i tehnologii. 2018;(3): 42–49. (In Russ.).
  11. Jin XJ. Martensitic transformation in zirconia containing ceramics and its application. Current Opinion in Solid State and Materials Science. 2005;9:313–318.
  12. Sorokin OYu, Grashchenko DV, Solntsev SSt et al. Ceramic composite materials with high oxidation resistance for advanced aircraft vehicles. Trudy VIAM. 2014;(6): 4–15. (In Russ.).
  13. Kisi EH, Howard CJ. Crystal Structures of Zirconia Phases and their inter-relation. Key Engineering Materials. 1998;153–154:1–36.
  14. Asadikiya M. Oxygen vacancy stabilized zirconia; synthesis and properties. Ph.D. Thesis Chimie des Interactions Plasma-Surface (ChIPS), 16 March 2017, University of Mons, Belgium. 160 p.
  15. Korovin GV, Kulakov VA, Zaitseva MK et al. Inclusion in the traditional heat protective coatings of the gradient structures (CU)+(Zr02+7%Y203) for temperature redaction on the case of the descent spacecraft. Izvestie vuzov. Priborostroenie. 2018;61(8):720–724. (In Russ.).
  16. Lashchenko GI. Plasma hardening and spraying. Kiev: Ekotekhnologiya. 2003, 64 p. (In Russ.).
  17. Tsareva MN, Berdnik OB, Krivina LA et al. Structure and mechanical properties of plasma coating obtained from nickel coated powder zirconium dioxide material. Problemy prochnosti i plastichnosti. 2022;84(3):397–407. (In Russ.).
  18. Nikitin PV, Pavlyuk EA. Calculation of heat and mass transfer on the surface of the descent spacecraft. Trudy MAI. 2014;72.
  19. Il'inkova TA, Barsukova EA, Tagirov AT. Interrelation of characteristics of powder materials and mechanical properties of plasma heat protective coatings. Vestnik tekhnologicheskogo universiteta. 2015;18(15):116–121. (In Russ.).
  20. Krzhizhanovskii RE, Shtern ZYu. Thermophysical properties of nonmetallic materials. Leningrad: Energiya, 1973. 336 p. (In Russ.).
  21. Polezhaev YuV, Yur'evich FB. Thermal protection. ed. Energiya; 1976. 392 p. (In Russ.).
  22. Victor AC, Douglas TB. Physical Properties of High Temperature Materials: Part VI. Enthalpy and Heat Capacity of Magnesium Oxide, Zirconium Oxide and Zirconium Silicate from 0 to 900 °С. Washington: National Bureau of Standard, 1960. 16 p.
  23. Liebert CH. Emittance and Absorptance of NASA Ceramic Thermal Barrier Coating System. NASA Technical Paper 1190. 1978.
  24. Matkovskii NO, Ermolaev AYu, Tishkov VV. Thermal protection of aircraft based on new class of materials. Vestnik Moskovskogo aviatsionnogo instituta. 2023; 30(1):107–116. (In Russ.). 

mai.ru — informational site of MAI

Copyright © 2009-2025 by MAI