Khan SA, Sezer N, Koс M. Design, fabrication and nucleate pool-boiling heat transfer performance of hybrid micro-nano scale 2-D modulated porous surfaces. Applied Thermal Engineering. 2019;153:168–180. DOI: 10.1016/j.applthermaleng.2019.02.133
Wang W, Gao J, Shi X et al. Cooling performance analysis of steam cooled gas turbine nozzle guide vane. International Journal of Heat and Mass Transfer. 2013;62: 668–679. DOI: 10.1016/j.ijheatmasstransfer.2013.02.080
Wang W. Efficiency study of a gas turbine guide vane with a newly designed combined cooling structure. International Journal of Heat and Mass Transfer. 2015;80: 217–226. DOI: 10.1016/j.ijheatmasstransfer.2014.09.024
Yang Х, Liu Z, Liu Z et at. Turbine platform phantom cooling from airfoil film coolant, with purge flow. International Journal of Heat and Mass Transfer. 2019;140: 25–40. DOI: 10.1016/j.ijheatmasstransfer.2019.05.109
Moon SW, Kwon HM, Kim TS et al. A novel coolant cooling method for enhancing the performance of the gas turbine combined cycle. Energy. 2018;160:625–634. DOI: 10.1016/j.energy.2018.07.035
Boubaker R, Platel V. Dynamic model of capillary pum-ped loop with unsaturated porous wick for terrestrial application. Energy. 2016;111:402–413. DOI: 10.1016/j.en ergy.2016.05.102
Lei G, Li W, Wen Q. The convective heat transfer of fractal porous media under stress condition. International Journal of Thermal Sciences. 2019;137:55–63. DOI: 10.1016/j.ijthermalsci.2018.11.017
Polyaev VM, Genbach AA, Minashkin DV. Processes in a porous elliptical heat exchanger. Izvestiya VUZov. Ma-shinostroenie. 1991;4–6:73–77. (In Russ.).
Genbach АА, Genbach NА. Ways of obtaining the required information in the development of capillary-porous systems of power plants. Vestnik AUPET. 2013;2(21): 12–18. (In Russ.).
Polyaev VM, Genbach AA. Growth rate of steam bubbles in porous structures. Izvestiya VUZov. Mashino-stroenie. 1990;10:56–61. (In Russ.).
Genbach AA, Bondartsev DYu, Piralishvili ShA. Heat exchange crisis and limiting energy transfer in capillary-porous coatings of power units. Prikladnaya fizika i matematika. 2019;5:3–15. (In Russ.). DOI: 10.25791/pfim. 05.2019.921
Das AK, Das PK, Saha P. Performance of different structured surfaces in nucleate pool boiling. Applied Thermal Engineering. 2009;29:3643–3653. DOI: 10.101 6/j.applthermaleng.2009.06.020
Arik M, Bar-Cohen A, You SM. Enhancement of pool boiling critical heat flux in dielectric liquids by mic-roporous coatings. International Journal of Heat and Mass Transfer. 2007;50:997–1009. DOI: 10.1016/j.ijhe atmasstransfer.2006.08.005
Sarwar MS, Jeong YH, Chang SH. Subcooled flow boi-ling CHF enhancement with porous surface coatings. International Journal of Heat and Mass Transfer. 2007;50: 3649–3657. DOI: 10.1016/j.ijheatmasstransfer.2006.09.011
Forrest E, Williamson E, Buongiorno J et at. Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings. International Journal of Heat and Mass Transfer. 2010;53:58–67. DOI: 10.1016/j.ijheatmasstransfer.2009.10.008
Hasui A, Morigaki O (ed.). Cladding and spraying. Moscow: Mashinostroenie; 1985. 240 p. (In Russ.).
Genbach АА, Bondartsev DYu, Piralishvili ShА. Study of heat protective coatings natural materials. Thermal processes in engineering. 2024. Vol. 16. № 11. pp. 512–523. (In Russ.).
Avduevskii VS, Galitseiskii BM, Glebov GA (ed.). Fundamentals of Heat Transfer in Aviation and Rocket Equipment. Moscow: Mashinostroenie; 1975. 624 p. (In Russ.).
mai.ru — informational site of MAI Copyright © 2009-2025 by MAI |