Temperature field of anisotropic half-space with movable boundary at local thermal impact in conditions of heat exchange with outer ambient


Аuthors

Attetkov A. V.*, Volkov I. K.

Bauman Moscow State Technical University, MSTU, 5, bldg. 1, 2-nd Baumanskaya str., Moscow, 105005, Russia

*e-mail: fn2@bmstu.ru

Abstract

Proposed is а mathematical model of the process of formation of а temperature field in an anisotropic half-space, which boundary moves parallel to itself at а constant rate and it is subjected to local thermal action under conditions of heat exchange with the external environment. It is shown that in the moving coordinate system the temperature field of the research object can be represented as the sum of two independent additive components. The first of the components is due to influence of the external environment, heat exchange with it is realized according to Newton law. Using the composition of Fourier’s two-dimensional exponential integral transformation and Laplace’s integral transformation in analytically closed form second additive component of the temperature field is found under the most general assumptions about the operation mode and structure of the external heat flow. The obtained results confirm the previously observed “drift” effect of the temperature field in an anisotropic material with anisotropy of the properties of the general form.

Keywords:

anisotropic separation wall, local thermal action, temperature field, integral transformation

References

  1. Carslaw H., Jaeger J. Conduction of Heat in Solids, 2 ed. Oxford University Press, USA, 1959. 510 p. [Russ. ed. Carslaw H.S. and Iaeger I.C. Teploprovodnost’ tvyordyh tel. Moscow, Nauka, 1964. 488 p.]

  2. Lykov A.V. Teoriya teploprovodnosti [Theory of heat conductivity]. Moscow: Vysshaya shkola, 1967. 600 p.

  3. Kartashov E.M. Analiticheskie metody v teorii teploprovodnosti tvyordyh tel [Analytical methods in the theory of the thermal conductivity of solids]. Moscow, Vysshaya shkola, 2001. 552 p.

  4. Formalyov V.F. Teploprovodnost’ anizotropnyh tel. Analiticheskie metody resheniya zadach [Thermal conductivity of anisotropic bodies. Analytical methods for solving problems]. Moscow, Fizmatlit, 2014. 312 p.

  5. Formalyov V.F. Teploperenos v anizotropnyh tvyordyh telah. Chislennye metody, teplovye volny, obratnye zadachi [Heat transfer in anisotropic solids. Numerical methods, heat waves, inverse problems]. Moscow, Fizmatlit, 2015. 280 p.

  6. Formalyov V.F., Kolesnik S.A. Matematicheskoe modelirovanie aehrogazodinamicheskogo nagreva zatuplyonnyh anizotropnyh tel [Mathematical modeling of aerogasdynamic heating of blunted anisotropic bodies]. Moscow, Izd-vo MAI, 2016. 160 p.

  7. Kartashov E.M. Analytical methods of solution of boundary-value problems of nonstationary heat conduction in regions with moving boundaries. Journal of Engineering Physics and Thermophysics, 2001, vol. 74, pp. 498–536.

  8. Koshlyakov N.S., Gliner E.B., Smirnov M.M. Uravneniya v chastnyh proizvodnyh matematicheskoj fiziki [Equations in partial derivatives of mathematical physics]. Moscow, Vysshaya shkola, 1970. 712 p.

  9. Pekhovich A.I., Zhidkih V.M. Raschyot teplovogo rezhima tvyordyh tel [Calculation of the thermal regime of solids]. Leningrad, Energiya, 1968. 304 p.

  10. Sneddon I. Preobrazovaniya Fur’e. [Fourier transforms]. Moscow: Izd-vo inostr. lit., 1955. 668 p.

  11. Bellman R. Vvedenie v teoriyu matric [Introduction to matrix analysis]. Moscow, Nauka, 1969. 368 p.

  12. El’sgol’c L.E. Differencial’nye uravneniya i variacionnoe ischislenie [Differential equations and calculus of variations]. Moscow, Nauka, 1969. 424 p.

  13. Tables of integral transforms. Vol. 1. Mcgraw-hill Book Company, Inc., 1954 [Batmen H., Erdelyi A. Tablicy integral’nyh preobrazovanij. Preobrazovaniya Fur’e, Laplasa, Mellina]. Moscow, Nauka, 1969. 334 p.

  14. Ditkin V.A., Prudnikov A.P. Spravochnik po operacionnomu ischisleniyu [Operational Calculation Handbook]. Moscow. Vysshaya shkola, 1965. 468 p.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI