Numerical simulation of turbulent mercury natural convection in a heat-ed-from-below cylinder with zero and non-zero thickness of the horizontal walls


Аuthors

Smirnov S. I.*, Smirnovskii A. A.

Peter the Great Saint-Petersburg Polytechnic University, 29, Polytechnicheskaya str., St. Petersburg, 195251, Russia

*e-mail: sergeysmirnov92@mail.ru

Abstract

The results of direct numerical simulation of mercury natural convection (Prandtl number Pr = 0.025) in a cylindrical container, with the height-to-diameter ratio equal to 1.0, heated from below are presented. The effect of heat transfer in the solid (steel) horizontal walls of finite thickness on the flow structure and integral heat transfer is being studied. The thickness of the vertical cylindrical wall is assumed infinitesimal. The effective Rayleigh number computed over the averaged temperature difference between the horizontal media interfaces ranges from 106 to 108. At that, the corresponding scale Rayleigh number, constructed over the difference between the temperatures of the specified outer surfaces of horizontal walls, varies from 3∙106 to 7∙108. Besides the Rayleigh and Prandtl numbers, the convection is determined also by ratios of the specific heat capacities and the thermal conductivities of the liquid and solid media, which are adopted close to unity in the present paper. All calculations have been performed employing the SINF/Flag-S finite-volume in-house program code. The Navier–Stokes equations, written with the Boussinesq approximation, were solved using the fractional-step method with second order accuracy of spatial and temporal discretization. It was shown, that in the examined range of Rayleigh numbers a mostly characteristic flow structure was the so-called large-scale circulation. The vertical velocity component time variations analysis points to the presence of random low-frequency oscillations of the convective cell that were observed earlier in experimental studies. Integral Nusselt numbers calculated at zero wall thickness are in a good agreement with computational data reported by other authors. Quantitative difference between the Nusselt numbers obtained in cases of zero and non-zero thickness of the horizontal walls has been determined, namely, in the case of the finite wall thickness the integral heat transfer through the layer is 5-10% higher.

Keywords:

Rayleigh-Bénard convection, liquid metal, conjugate heat transfer

References

  1. Sheremet M.А., Syrodoj S.V. Аnaliz svobodnokonvektivnykh rezhimov teploperenosa v tekhnologicheskikh sistemakh tsilindricheskoj formy [Analysis of free convection modes of heat transfer in cylindrical technological systems]. Izvestiya TPU – Bulletin of the Tomsk Polytechnic University, 2010, vol. 317, no. 4. pp. 43–48. In Russ.
  2. Kuznetsov G.V., Sheremet M.A. Conjugate natural convection in a closed domain containing a heat-releasing element with a constant heat-release intensity. Journal of Applied Mechanics and Technical Physics, 2010, vol. 51, no. 5, pp. 699-712.

  3. Berdnikov V.S., Markov V.A. Heat transfer in a horizontal fluid layer heated from below upon rotation of one of the boundaries. Journal of Applied Mechanics and Technical Physics, 1998, vol. 39, no. 3, pp. 434–440.

  4. Vasil’ev A.Y., Kolesnichenko I.V., Mamykin A.D., Frick P.G., Khalilov R.I., Rogozhkin S.A., Pakholkov V.V. Turbulent convective heat transfer in an inclined tube filled with sodium. Technical Physics. The Russian Journal of Applied Physics, 2015, vol. 60, no. 9, pp. 1305-1309.

  5. Ahlers G., Grossmann S., Lohse D. Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection. Reviews of Modern Physics, 2009, vol. 81, no. 2, pp. 503–537.

  6. Takeshita T., Segawa T., Glazier J.A., Sano M. Thermal turbulence in mercury. Phys. Rev. Lett., 1996, vol. 76, no. 9, pp. 1465–1468.

  7. Cioni S., Ciliberto S., Sommeria J. Strongly turbulent Rayleigh-Bénard convection in mercury: Comparison with results at moderate Prandtl number. J. Fluid Mech., 1997, vol. 335, pp. 111–140.

  8. Brown E., Nikolaenko A., Funfschilling D., Ahlers G. Heat transport in turbulent Rayleigh-Bénard convection: Effect of finite top- and bottom-plate conductivities. Physics of Fluids, 2005, vol. 17, 075108.

  9. Stevens R.J.A.M., Clercx H.J.H., Lohse D. Heat transport and flow structure in rotating Rayleigh-Bénard convection. European Journal of Mechanics. B, Fluids, 2013, vol. 40, pp. 41–49.

  10. Verzicco R., Camussi R. Transitional regimes of low-Prandtl thermal convection in a cylindrical cell. Physics of Fluids, 1997, vol. 9, no. 5, pp. 1287–1295.

  11. Abramov A., Korsakov A. Direct numerical modeling of mercury turbulent convection in axisymmetric reservoirs including magnetic field effects. Heat Transfer Research, 2004, vol. 35, no. 1–2, pp. 76–84.

  12. Scheel J.D., Schumacher J. Global and local statistics in turbulent convection at low Prandtl numbers. J. Fluid Mech., 2016, vol. 802, pp. 147–173.

  13. Verzicco R. Effects of nonperfect thermal sources in turbulent thermal convection. Physics of Fluids, 2004, vol. 16, no. 6, pp. 1965–1979.

  14. Abramov A., Smirnov E., Smirnovsky A. Numerical simulation of turbulent Rayleigh-Bénard conjugate convection of low Pr fluid in a cylindrical container. Proceedings of the 7th Baltic Heat Transfer Conference, 2015, pp. 11–16.

  15. Smirnov S.I., Smirnov E.M., Smirnovsky A.A. Endwall heat transfer effects on the turbulent mercury convection in a rotating cylinder. St. Petersburg Polytechnical University Journal: Physics and Mathematics, 2017, vol. 3, no. 2, pp. 83–94.

  16. Kim J., Moin P. Application of a fractional-step method to incompressible Navier-Stokes equations. Journal of Computational Physics, 1985, vol. 59, pp. 308–323.

  17. Jan Y.-J., Sheu T.W.-H. A quasi-implicit time advancing scheme for unsteady incompressible flow. Part I: Validation. Comput. Methods Appl. Mech. Engrg., 2007, vol. 196, no. 45–48, pp. 4755–4770.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI