Thermal shock and dynamic thermoelasticity on the basis of the hyperbolic type equations


Аuthors

Kartashov E. M.1*, Nenakhov E. V.2**

1. MIREA — Russian Technological University (Lomonosov Institute of Fine Chemical Technologies), 78, Vernadsky prospect, Moscow, 119454, Russia
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: kartashov@mitht.ru
**e-mail: newnew94@mail.ru

Abstract

The theory of dynamic thermoelasticity in the problem of thermal shock is developed on the basis of Maxwell–Cattaneo–Lykov–Vernot phenomenology on the finite velocity of heat propagation in solids. A compatibility equation in stresses is proposed that generalizes the Beltrami–Mitchell relation to dynamic problems and as a special case of the investigational thermal reaction of a massive solid body to a non-thermal shock. Different modes of sudden training of the body spray were studied: temperature, thermal, environment. The most dangerous mode of thermal influence is revealed; stress jumps at the front of a thermoelastic wave are calculated, as ratios that have great practical importance in the evaluation of thermal strength of solid body under thermal shock conditions.

Keywords:

heat stroke, the final velocity of heat propagation, dynamic thermoelastic stresses, stress jumps

References

  1. KartashovE.M., Kudinov V.А. Аnaliticheskaya teoriya teploprovodnosti i prikladnoj termouprugosti [Analytical theory of heat conduction and thermoelasticity]. Moscow: URRS, 2013. 656 p. In Russ.

  2. Kartashov E.M., Kudinov V.V. Аnaliticheskie metody teorii teploprovodnost i ieyo prilozhenij [Analytical methods of the theory of heat conductivity and its applications].Moscow: URRS, 2017. 1080 p.In Russ.

  3. Kartashov E.M. Аnaliticheskie metody v teorii teploprovodnosti tverdykh tel [Analytical methods in the theory of the thermal conductivity of solids].Moscow: Vyssh.shkola, 2001. 550 p.In Russ.

  4. Formalev V.F. Teploperenos v anizotropnykh tverdykh telakh [Heat transfer in anisotropic solids]. Moscow: Fizmatlit. 2015. 280 p. In Russ.

  5. Kartashov E.M. Analytical solutions of hyperbolic heat-conduction models. Journal of Engineering Physics and Thermophysics, 2014, vol. 87, no. 5, pp. 1116–1125. In Russ.

  6. Novatsky V. Teoriya uprugosti [Theory of Elasticity]. Moscow: Mir, 1975. 872 p. In Russ.

  7. Kartashov E.M. Mathematical models of heat conduction with a two-phase laq. Journal of Engineering Physics and Thermophysics, 2016, vol. 89, no. 2, pp. 346–356.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI