When the surface of the layer of thermal protection coating with a low value of thermal conductivity factor is unevenly heated, an area with elevated temperature, which may exceed the allowable value for the coating material, may occur on this surface. One of the possible ways to reduce the effect of intense local heating on the performance of the layer of thermal protection coating is to use an anisotropic material, the thermal conductivity of which, for example, is higher in the tangential direction than in the direction normal to the surface.
Numerical analysis of the effect of anisotropy on the temperature state of a flat layer of thermal protection coating showed that with a high degree of anisotropy, when the thermal conductivity of the material of layers in the longitudinal direction exceeds the thermal conductivity in the transverse direction by more than an order of magnitude, a cooling effect occurs on some part of the streamlined surface, i.e. a change in the direction of the heat flow occurs on this part of the surface due to the increase in its temperature.
It should be expected that the manifestation of a similar effect is possible in case of a flow around anisotropic thermal protection coating on an axisymmetric body with a dulling in the form of a spherical surface fragment. In order to quantify this effect, a model problem of stationary thermal conductivity in anisotropic spherical layer of a thermal protection coating is considered with varying degrees of non-uniformity of its surface heating.
When analyzing the temperature state of a spherical layer of a thermal protection coating, the steady-state temperature distribution can be described by the function T(r,θ), which satisfies Laplace’s differential equation. In the model problem under consideration, the T0 temperature is set for the inner surface of the layer, and the heat flux of q(θ) density is supplied to its outer surface. The adopted variant of setting the thermal effect on the anisotropic spherical layer allows, based on the problem solution, to compare the effect of uniform heating of the layer on the outer surface with the localized thermal effect occurring, for example, at the front critical point behind the detached shock wave in case of hypersonic flow around a spherical dull. In order to solve the problem, the method of separation of variables (Fourier method) with the use of Legendre polynomials is applied.
As a result of solving the problem, it has been established that an increase in the degree of anisotropy of the spherical layer material leads to a decrease in the temperature of the most heated surface point. Also, quantitative estimates have been obtained for the degree of influence of changes in the heterogeneity of the heat flux density distribution and the relative thickness of the layer of thermal protection material on the temperature of the most heated point.
The obtained solution makes it possible to choose the characteristics of anisotropic material of a thermal protection coating that make it possible to reduce the intensity of thermal effect on the surface depending on the parameters of the supplied heat flux.
Formalev V.F. Heat and mass transfer in anisotropic bodies. High Temperature, 2001, vol. 39, no. 5, pp. 753–774.
Formalev V.F. Teploprovodnost' anizotropnyh tel. Analiticheskie metody resheniya zadach [Thermal conductivity of anisotropic bodies. Analytical methods for solving prob lems]. Moscow: Fizmatlit, 2014. 312 p. In Russ.
Formalev V.F. Teploperenos v anizotropnyh tvyordyh telah. Chislennye metody, teplovye volny, obratnye zadachi [Heat transfer in anisotropic solids. Numerical methods, heat waves, inverse problems]. Moscow: Fizmatlit, 2015. 280 p. In Russ.
Kotovich A., Zarubin V., Kuvyrkin G. Lokal'noe teplovoe vozdejstvie na teplozashchitnoe pokrytie [Local thermal effect on the thermal barrier coating]. Deutschland, Saarbrücken, LAP LAMBERT Academic Publishing, 2015. 81 p. In Russ.
Attetkov A.V., Volkov I.K., Tverskaya E.S. Ierarhiya matematicheskih modelej processa formirovaniya temperaturnogo polya v sisteme "izotropnaya plastina – termoaktivnaya prokladka – anizotropnoe pokrytie" [The hierarchy of mathematical models of the process of temperature field formation in the system “plane isotropic wall – thermal active layer – anisotropic coating”]. Teplovyye protsessy v tekhnike – Thermal processes in engineering, 2013, no. 5, pp. 224–228. In Russ.
Attetkov A.V., Volkov I.K. Temperaturnoe pole anizotropnoj ohlazhdaemoj plastiny, nahodyashchejsya pod vozdejstviem impul'sno-periodicheskogo teplovogo potoka s intensivnost'yu gaussovskogo tipa [The temperature field of an anisotropic cooled plate under the influence of a repetitively pulsed heat flow with a Gaussian-type intensity]. Izv. RАN. Energetika – Proceedings of the Russian Academy of Sciences. Power Engineering, 2012, no. 5, pp. 71–79. In Russ.
АttetkovА.V., Volkov I.K. Temperaturnoe pole anizotropnoj okhlazhdaemoj plastiny, nakhodyashhejsya pod vozdejstviem vneshnego teplovogo potoka [Temperature field of anisotropic cooled plate under the influence of external heat flow]. Izv. RАN. Energetika – Proceedings of the Russian Academy of Sciences. Power Engineering, 2012, no. 6, pp. 108–117. In Russ.
Zarubin V.S., Kotovich A.V., Kuvyrkin G.N. Optimal'naya tolshchina anizotropnogo pokrytiya na ohlazhdaemoj stenke pri lokal'nom vneshnem nagrev [Optimal thickness of the anisotropic surface on the cooling plate with applied local external heating]. Izv. RАN. Energetika – Proceedings of the Russian Academy of Sciences. Power Engineering, 2014, no. 5, pp. 45–50. In Russ.
Attetkov A.V., Volkov I.K. Optimal'naya tolshchina anizotropnoj stenki, razdelyayushchej dve razlichnye sredy, pri ee lokal'nom nagreve [The optimum thickness of an anisotropic wall, which separates two different environments, at its local heating]. Teplovyye protsessy v tekhnike – Thermal processes in engineering, 2017, vol. 9, no. 9, pp. 417–421. In Russ.
Attetkov A.V., Volkov I.K. Vliyanie anizotropii svojstv na optimal'nuyu tolshchinu pokrytiya ohlazhdaemoj plastiny pri lokal'nom teplovom vozdejstvii [Influence of anisotropy of properties on the optimum thickness of the coating of a cooled plate under local thermal exposure]. Izv. RАN. Energetika – Proceedings of the Russian Academy of Sciences. Power Engineering, 2018, no. 1, pp. 78–86. In Russ.
Attetkov A.V., Volkov I.K. Optimal'naya tolshchina anizotropnogo pokrytiya razdelitel'noj stenki dvuh razlichnyh sred pri lokal'nom teplovom vozdejstvii [Optimum anisotropic coating thickness for a wall separating two different media and subjected to local heating] // Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Seriya Mashinostroyeniye – Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2018, no. 4, pp. 4–15. In Russ. DOI 10.18698/0236-3941-2018-4
Attetkov A.V., Vlasov P.A., Volkov I.K. The conditions for the existence of the optimal thickness of a cooled anisotropic wall subjected to local heat exposure. High Temperature, 2018, vol. 56, no. 3, pp. 389–392.
Avduevsky V.S., Glebov G.A. Teploobmen v perednej kriticheskoj tochke nerazrushaemogo tela, omyvaemogo potokom chastichno ionizirovannogo vozduha [Heat transfer at a front stagnation point of nondestructable body in a flow of partially ionized air]. [Inzhenerno-fizicheskii zhurnal – Journal of engineering physics and thermo- physics, 1970, vol. 18, no. 2, pp. 9–18. In Russ.
Nikitin P.V. Teplovaya zashchita spuskaemyh kosmicheskih apparatov [Thermal protection of the space reentry vehicle]. Moscow: Publishing house of the Moscow Aviation Institute, 1992. 75 p. In Russ.
Alifanov O.M., Vabishchevich P.N., Mikhailov V.V., Nenarokomov A.V., Polezhaev Yu.V. , Resnick S.V. Osnovy indentifikacii i proektirovaniya teplovyh processov i sistem [Fundamentals of identification and design of thermal processes and systems] Moscow: Logos, 2001. 400 p. In Russ.
Osnovy teploperedachi v aviacionnoj i raketno-kosmicheskoj tekhnike. Pod red. V.S. Avduevskogo, V.K. Koshkina [Fundamentals of heat transfer in aviation and rocket-space technologies. Ed. V.S. Avduevsky, V.K. Koshkin]. Moscow: Mashinostroyeniye, 1992. 624 p. In Russ.
Polezhaev Yu.V., Yurevich F.B. Teplovaya zashchita [Thermal protection]. Moscow: Energiya, 1976. 392 p. In Russ.
Pankratov B.M., Polezhaev Yu.V., Rudko A.K. Vzaimodejstvie materialov s gazovymi potokami [Material- gas flow interaction]. Moscow: Mashinostroyeniye, 1976. 224 p. In Russ.
Nikitin P.V. Teplovaya zashchita [Thermal protection]. Moscow: Publishing house of the Moscow Aviation Institute, 2006. 512 p. In Russ.
Gorsky V.V., Nosatenko P.Ya. Matematicheskoe modelirovanie processov teplo- i massoobmena pri aerotermicheskom razrushenii kompozicionnyh teplozashchitnyh materialov na kremnezemnoj osnove [Mathematical modeling the heat and mass transfer processes in the aerothermochemical destruction of composite thermal shield materials based on silica]. Moscow: Nauchnyy mir , 2008. 256 p. In Russ.
Formalev V.F., Kuznetsova E.L. Teplomassoperenos v anizotropnyh telah pri aerogazodinamicheskom nagreve [Heat and mass transfer in anisotropic bodies during aerogasdynamic heating]. Moscow: Publishing House MAI- Print, 2010. 308 p. In Russ.
Kuznetsova E.L. Matematicheskoe modelirovanie teplomassoperenosa v kompozicionnyh materialah pri vysokotemperaturnom nagreve v elementah raketno- kosmicheskoj tekhniki [Mathematical modeling of heat and mass transfer in composite materials with high-temperature heating in the elements of rocket and space technology]. Moscow: Publishing House MAI-Print], 2010. 160 p. In Russ.
Formalev V.F., Kolesnik S.A. Conjugate heat transfer between wall gasdynamic flows and anisotropic bodies. High Temperature, 2007, vol. 45, no. 1, pp. 76–84.
Formalev V.F., Kolesnik S.A., Kuznetsova E.L. The effect of longitudinal nonisothermality on conjugate heat transfer between wall gasdynamic flows and blunt anisotropic bodies. High Temperature, 2009, vol. 47, no. 2, pp. 228–234.
Formalev V.F., Kolesnik S.A., Selin I.A. O sopryazhennom teploobmene pri aerodinamicheskom nagreve anizotropnyh tel s vysokoj stepen'yu anizotropii [About coupled heat exchange in a case of aerodynamic heat of bodies with high degree of anisotropy]. Teplovyye protsessy v tekhnike – Thermal processes in engineering, 2016, vol. 8, no. 9, pp. 388–394. In Russ.
Kartashov E.M. Analiticheskie metody v teorii teploprovodnosti tvyordyh tel [Analytical methods in the theory of the thermal conductivity of solids]. Moscow: Vysshaya shkola, 2001. 552 p. In Russ.
Kamke E. Spravochnik po obyknovennym differencial'nym uravneniyam [Handbook on ordinary differential equations[. Moscow: Nauka, 1976. 576 p. In Russ.
Zaitsev V.F., Polyanin A.D. Spravochnik po linejnym obyknovennym differencial'nym uravneniyam [Handbook of linear ordinary differential equations]. Moscow: Izdatel'stvovo Faktorial, 1997. 304 p. In Russ.
mai.ru — informational site of MAI Copyright © 2009-2024 by MAI |