The article suggests a mathematical model of a temperature field forming in a system, imitated by a wall dividing two different media with anisotropic covering of one of its surfaces, subjected to the local thermal impact in conditions of heat exchange with ambient environment. It is demonstrated, that the temperature field of the system under study represents the sum of the two independent additive components. An analytical solution for the first of the additive components of the temperature field, formed due only to the difference in temperature of the divided environments from the reference temperature of the dividing system, was obtained with special ly developed finite integral transformation. The second independent additive component of the temperature field of dividing system formed by the impact of a heat flux on its anisotropic covering at equality of reference temperature of an object under study and temperatures of the divided environments is identified. Solution of the corresponding problem of non-stationary thermal conductivity in analytically closed form was obtained applying integral transformations method. The obtained results confirm the earlier found effect of the temperature field “suppression” in anisotropic material with properties anisotropy of the general type.
Polezhaev Yu.V., Yurevich F.B. Teplovaya zashchita [Thermal protection]. Moscow: Energiya, 1976. 392 p. In Russ.
Zarubin V.S. Raschet i optimizatciia termoizoliatcii. [Calculation and optimization of thermal insulation]. Moscow, Ehnergoatomizdat, 1991. 192 p. In Russ.
Polezhaev Yu.V., Shishkov A.A. Gazodinamicheskie ispyta niya teplovoi zashchity [Gas dynamic testing of thermal protection]. Moscow, Promedak publ., 1992. 248 p. In Russ.
Galitseiskii B.M., Sovershennyi V.D., Formalev V.F. Teplovaya zashchita lopatok turbin [Thermal protection of turbine blades]. Moscow, MAI Publishing house, 1996. 356 p. In Russ.
Zinchenko V.I. Matematicheskoe modelirovanie sopryazhennykh zadach teploobmena [Mathematical modeling of coupled heat transfer problems]. Tomsk: Publishing house TGU, 1985. 221 p. In Russ.
Kudinov V.A., Kartashov E.M., Kalashnikov V.V. Analiticheskie resheniya zadach teplomassoperenosa i termouprugosti dlya mnogosloinykh konstruktsii [Analytical solutions to the problems of heat and mass transfer and thermoelasticity for multilayer structures]. Moscow: Vysshaya shkola, 2005. 430 p. In Russ.
Formalev V.F., Kuznetsova E.L. Teplomassoperenos v anizotropnyh telah pri aerogazodinamicheskom nagreve [Heat and mass transfer in anisotropic bodies during aerogasdynamic heating]. Moscow: Publishing House MAI- Print, 2010. 308 p. In Russ.
Formalev V.F. Teploperenos v anizotropnyh tvyordyh telah. Chislennye metody, teplovye volny, obratnye zadachi [Heat transfer in anisotropic solids. Numerical methods, heat waves, inverse problems]. Moscow: Fizmatlit, 2015. 280 p. In Russ.
Formalev V.F., Kolesnik S.A. Matematicheskoe modelirovanie aerogazodinamicheskogo nagreva zatuplennykh anizotropnykh tel [Mathematical modeling of aerogasdynamic heating of blunted anisotropic bodies]. Moscow: Publishing House MAI-Print, 2016. 160 p. In Russ.
Anatychuk L.I. Termoelementy i termoelektricheskie ustroistva [Thermocouples and thermoelectric devices]. Kiev: Naukova dumka, 1979. 766 p. In Russ.
Attetkov A.V., Volkov I.K., Tverskaya E.S. Termoaktivnaya prokladka kak sredstvo upravlyaemogo vozdeistviya na temperaturnoe pole konstruktsii. [Thermosetting gasket as a means of controlled impact on the temperature field of the structure]. Izv. RАN. Energetika – Proceedings of the Russian Academy of Sciences. Power Engineering, 2002, no. 4, pp. 131–141. In Russ.
Attetkov A.V., Volkov I.K., Tverskaya E.S. Bazovaya model' protsessa teploperenosa v ekranirovannom poluprostranstve s termoaktivnoi prokladkoi [Baseline model of heat transfer in screened half-space with a thermosetting layer]. Izv. RАN. Energetika – Proceedings of the Russian Academy of Sciences. Power Engineering, 2009, no. 2, pp. 147–155. In Russ.
Attetkov A.V., Volkov I.K., Tverskaya E.S. Mathematical modeling of the process of heat transfer in a shielded half- space with a thermoactive spacer under external thermal action. Journal of Engineering Physics and Thermophysics, 2008, vol. 81, no. 3, pp. 588–597.
Attetkov A.V., Volkov I.K., Tverskaya E.S. Temperature field of a screened wall with a thermoactive lining on exposure to an axisymmetric thermal effect. neering Physics and Thermophysics, 2009, vol. 82, no. 5, pp. 940–948.
Attetkov A.V., Volkov I.K., Tverskaya E.S. Temperaturnoe pole mnogosloinogo poluprostranstva pri neideal'nom teplovom kontakte mezhdu sloyami [Temperature field in the the multi-layer halfspace under non-ideal thermal contact between layers]. Izv. RАN. Energetika – Proceedings of the Russian Academy of Sciences. Power Engineering, 2010, no. 3, pp. 83–91. In Russ.
Volkov I.K., Tverskaya E.S. Optimal'naya tolshchina ekranirovannoi stenki s termoaktivnoi prokladkoi, funktsioniruyushchei po printsipu obratnoi svyazi [Optimal thickness of the shielded wall with a thermosetting gasket operating on the feedback principle]. Nauka i obrazovanie. MGTU im. N. E. Baumana Science and education. Bauman Moscow State Technical University, 2012, no. 5, 12 p. In Russ.
Formalev V.F. Teploprovodnost' anizotropnyh tel. Analiticheskie metody resheniya zadach [Thermal conductivity of anisotropic bodies. Analytical methods for solving prob- lems]. Moscow: Fizmatlit, 2014. 312 p. In Russ.
Attetkov A.V., Volkov I.K., Tverskaya E.S. Ierarhiya matematicheskih modelej processa formirovaniya temperaturnogo polya v sisteme "izotropnaya plastina – termoaktivnaya prokladka – anizotropnoe pokrytie" [The hierarchy of mathematical models of the process of temperature field formation in the system “plane isotropic wall – thermal active layer – anisotropic coating”]. Teplovyye protsessy v tekhnike – Thermal processes in engineering, 2013, no. 5, pp. 224–228. In Russ.
Attetkov A.V., Volkov I.K., Tverskaya E.S. Statsionarnoe temperaturnoe pole okhlazhdaemoi ortotropnoi plastiny s termicheski tonkoi termoaktivnoi prokladkoi i anizotropnym pokrytiem, nakhodyashcheisya pod vozdeistviem vneshnego teplovogo potoka [Stationary temperature field of a cooled orthotropic wall with a thermal active layer and anisotropic coating, under the influence of external heat flux]. Izv. RАN. Energetika – roceedings of the Russian Academy of Sciences. Power Engineering, P 2013, no. 5, pp. 136–145. In Russ.
Attetkov A.V., Volkov I.K. Temperaturnoe pole konstruktsii s aktivnoi sistemoi teplozashchity, soderzhashchei anizotropnoe pokrytie [Temperature field of a structure with an active thermal protection system containing an anisotropic coating]. Izv. RАN. Energetika – Proceedings of the Russian Academy of Sciences. Power Engineering, 2013, no. 6, pp. 125–136. In Russ.
Attetkov A.V., Volkov I.K. Ustanovivsheesya temperaturnoe pole sistemy s aktivnoi teplozashchitoi [Steady-state temperature field of the system with active thermal protection]. Teplovyye protsessy v tekhnike – Thermal processes in engineering, 2014, no.6, pp. 81–86. In Russ.
Attetkov A.V., Volkov I.K. Osobennosti protsessa formirovaniya temperaturnogo polya v sisteme s aktivnoi teplozashchitoi [Peculiarities of formation of the temperature field in a system with an active heat shield] Izv. RАN. Energetika – Proceedings of the Russian Academy of Sciences. Power Engineering, 2014, no. 3, pp. 69–81. In Russ.
Negoita C.V. Management applications of sistem. Birk- hauser, 1979. 154 p.
Dеsоеr C.A., Vidуаsаgаr M. Sistemy s obratnoi svyaz'yu: vkhod-vykhodnye sootnosheniya [Fееdbаск sуstеmi: inрut – оutрut рrореrtiеs]. Moscow: Nauka, 1983. 278 p. In Russ.
Lykov A.V. Teoriya teploprovodnosti [Theory of heat conductivity]. Moscow: Vysshaya shkola, 1967. 600 p. In Russ.
Kartashov E.M. Analiticheskie metody v teorii teploprovodnosti tvyordyh tel [Analytical methods in the theory of the thermal conductivity of solids]. Moscow: Vysshaya shkola, 2001. 552 p. In Russ.
Koshlyakov N.S., Gliner E.B., Smirnov M.M. Uravneniya v chastnykh proizvodnykh matematicheskoj fiziki [Partial differential equations of mathematical physics]. Moscow: Vysshaya shkola, 1970. 712 p. In Russ.
Volkov I.K., Kanatnikov A.N. Integral'nye preobrazovaniya i operatsionnoe ischislenie [Integral transforms and operational calculus]. Moscow: Publishing house Bauman Moscow State Technical University, 2015. 228 p. In Russ.
El'sgol'c L.E. Differencial'nye uravneniya i variacionnoe ischislenie [Differential equations and calculus of variations]. Moscow: Nauka, 1969. 424 p. In Russ.
Sneddon I. Preobrazovaniya Fur'e [Fourier transforms]. Moscow: Izd-vo inostr. lit., 1955. 668 p. In Russ.
Bellman R. Vvedenie v teoriyu matric [Introduction to the theory of matrices]. Moscow: Nauka, 1969. 368 p. In Russ.
Attetkov A.V., Volkov I.K. Temperaturnoe pole anizotropnoj ohlazhdaemoj plastiny, nahodyashchejsya pod vozdejstviem impul'sno-periodicheskogo teplovogo potoka s intensiv nost'yu gaussovskogo tipa [The temperature field of an anisotropic cooled plate under the influence of a repetitively pulsed heat flow with a Gaussian-type intensity]. Izv. RАN. Energetika – Proceedings of the Russian Academy of Sciences. Power Engineering, 2012, no. 5, pp. 71–79. In Russ.
Аttetkov А.V., Volkov I.K. Temperaturnoe pole okhlazhdaemoj izotropnoj plastiny s anizotropnym pokrytiem, nakhodyashhejsya pod vozdejstviem vneshnego teplovogo potoka [Temperature field of a cooled isotropic plate with anisotropic covering under influence of external heat flow]. Teplovye protsessy v tekhnike – Thermal processes in engineering, 2013, vol. 5, no. 2, pp. 50–58. In Russ.
mai.ru — informational site of MAI Copyright © 2009-2024 by MAI |