The article considers a problem concerning temperature field determining of an isotropic solid with an inclusion in the form of a spherical layer, absorbing penetrating radiation. The ana- lyzed mathematical model of the heat transfer process in the studied system is based on the hy- pothesis that the absorbing inclusion is thermally thin, i.e. on the «concentrated capacitance» idea realization. It represents a mixed problem for the second-order equation in partial deriva- tives of a parabolic type with the specific edge condition, accounting, in fact, for the presence of the absorbing inclusion in the system. Approximate analytical method, employing integral rep- resentation of the solution of the non-stationary heat transfer problem being considered, is pro- posed. This method is based on the solution representation as an expansion in a small determin- ing parameter of the mathematical model being realized with subsequent mixed integral Fourier transform application over the spatial variable to the sought functions finding. The obtained re- sults were applied to theoretical estimation of the effect of spherical layer width, absorbing pene- trating radiation, on the temperature field, being formed, of the object under study.
Karslou G., Eger D. Teploprovodnost’ tvyordyh tel [Thermal conductivity of solids]. Moscow: Nauka, 1964. 488 p. In Russ.
Lykov A.V. Teoriya teploprovodnosti [Theory of heat con- ductivity]. Moscow: Vysshaya shkola, 1967. 600 p. In Russ.
Kartashov E.M. Analiticheskie metody v teorii tep- loprovodnosti tvyordyh tel [Analytical methods in the theory of the thermal conductivity of solids]. Moscow: Vysshaya shkola, 2001. 552 p. In Russ.
Formalev V.F. Teploprovodnost’ anizotropnyh tel. Analit- icheskie metody resheniya zadach [Thermal conductivity of anisotropic bodies. Analytical methods for solving prob- lems]. Moscow: Fizmatlit, 2014. 312 p.
Assovsky I.G. Fizika goreniya i vnutrennyaya ballistika [Combustion physics and internal ballistics]. Moscow: Nau- ka, 2005. 357 p. In Russ.
Chernai A.V. On the mechanism of ignition of condensed secondary explosives by a laser pulse. Combustion, Explo- sion, and Shock Waves, 1996, vol. 32, no. 1, pp. 8–15.
Burkina R.S., Morozova E.Y., Tsipilev V.P. Initiation of a reactive material by a radiation beam absorbed by optical heterogeneities of the material. Combustion, Explosion, and Shock Waves, 2011, vol. 47, no. 5, pp. 581–590.
Krieger V.G., Kalenskii A.V., Ananyeva M.V., Zve- kov A.A., Zykov I.Yu. Fiziko-khimicheskie osnovy mikroochagovoj modeli vzryvnogo razlozheniya energe- ticheskikh materialov [Physicochemical basis of the micro- focal model of explosive decomposition of energy mate- rials]. Izv. Vuzov. Fizika — Russian Physics Journal, 2013, vol. 56, no. 9–3, pp. 175–180. In Russ.
Aduev B.P., Anan’eva M.V., Zvekov A.A., Kalenskii A.V., Kriger V.G., Nikitin A.P. Miro-hotspot model for the laser initiation of explosive decomposition of energetic materials
with melting taken into account. Combustion, Explosion, and Shock Waves, 2014, vol. 50, no. 6, pp. 704–710.
Kalensky A.V., Zvekov A.A., Nikitin A.P. Mikrochago- vaya model’ s uchetom zavisimosti koeffitsienta effek- tivnosti pogloshheniya lazernogo impul’sa ot temperatury [Micro-focal model taking into account the dependence of the efficiency coefficient of a laser pulse absorption on tem- perature]. Khimicheskaya fizika — Chemical Physics, 2017, vol. 36, no. 4, pp. 43–49. In Russ.
Kalenskii A.V., Gazenaur N.V., Zvekov A.A., Nikitin A.P. Critical conditions of reaction initiation in the PETN du- ring laser heating of light-absorbing nanoparticles. Com- bustion, Explosion, and Shock Waves, 2017, vol. 53, no. 2, pp. 219–228.
Zarubin V.S., Kuvyrkin G.N. Matematicheskie modeli mekhaniki i ehlektrodinamiki sploshnoj sredy [Mathematical models of mechanics and electrodynamics of continua]. Moscow: Publishing house Bauman, 2008. 512 p. In Russ.
Pudovkin M.А., Volkov I.K. Kraevye zadachi ma- tematicheskoj teorii teploprovodnosti v prilozhenii k raschetam temperaturnykh polej v neftyanykh plastakh pri zavodnenii [Boundary-value problems of the mathematical theory of heat conduction in application to calculations of temperature fields in oil reservoirs in water flooding]. Ka- zan: Publishing house of Kazan University, 1978. 188 p. In Russ.
Attekov A.V., Volkov I.K., Gaidaenko K.A. Protsessy teploperenosa v prozrachnom dlya izlucheniya tverdom tele s pogloshhayushhim sfericheskim vklyucheniem [Heat transfer processes in a radiation-transparent solid with ab- sorbing spherical inclusion]. Trudy Sed’moj Rossijskoj natsional’noj konferentsii po teploobmenu — Proceedings of the Seventh Russian National Conference on Heat Ex- change, Moscow, 2018, vol. 3, pp. 7–11. In Russ.
Attetkov A.V., Volkov I.K., Gaydaenko K.A. Tempera- turnoe pole prozrachnogo dlya izlucheniya tverdogo tela s pogloshhayushhim sfericheskim vklyucheniem [Tempera- ture field of transparent for radiation solid with absorbing spherical inclusion]. Teplovye protsessy v tekhnike — Ther- mal processes in engineering, 2018, vol. 10, no. 5–6, pp. 256–264. In Russ.
Attetkov A.V., Volkov I.K., Gaydaenko K.A. Protsessy teploperenosa v tverdom tele s pogloshhayushhim vklyucheniem pri vozdejstvii lazernogo izlucheniya [Heat transfer processes in a solid with absorbing inclusion while the laser radiation impact]. Teplovye protsessy v tekhnike — Thermal processes in engineering, 2019, vol. 19, no. 5, pp. 216–221. In Russ.
Attetkov A.V., Volkov I.K., Gaydaenko K.A. Аvto- model’nye protsessy teploperenosa v prozrachnom dlya izlucheniya tverdom tele s pogloshhayushhim vklyucheniem pri nalichii fazovykh prevrashhenij v sisteme [Self-similar heat transfer processes in a radiation-transparent solid body containing an absorptive inclusion with the system featuring
phase transitions]. Vestnik MGTU im. N.E. Baumana. Mash- inostroenie — Herald of the Bauman Moscow State Tech- nical University. Series Mechanical Engineering, 2019, no. 2, pp. 60–70. In Russ. DOI: 10.18698/0236-3941-2019- 2-60-70
Ladyzhenskaya O.А., Solonnikov V.А., Ural’tseva N.N. Linejnye i kvazilinejnye uravneniya parabolicheskogo tipa [Linear and quasilinear equations of parabolic type]. Mos- cow, Nauka, 1967. 736 p. In Russ.
Naimark M.A. Linejnye differentsial’nye operatory [Linear differential operators]. Moscow: Nauka, 1969. 528 p. In Russ.
Volkov I.K., Kanatnikov A.N. Integral’nye preobra- zovaniya i operatsionnoe ischislenie [Integral transfor- mations and operational calculus]. Moscow: Publishing house Bauman, 2015. 228 p. In Russ.
Nayfeh A.H. Introduction to Perturbation Techniques. Wiley, New York, 1981. 536 p. (Russ. ed. Nayfeh A. Vvedenie v metody vozmushhenij. Moscow: Mir, 1984. 535 p.).
mai.ru — informational site of MAI Copyright © 2009-2024 by MAI |