The materials creation with pre-programmed properties and their modification to new quali- ty standards is one of the actual development areas in the field of processing technology for structural materials. The development of mathematical models of the impact of various factors on the processed material and the analysis of the results obtained allow us to consider a larger number of exposure options while minimizing financial costs in complex high-tech processes. There are a number of approaches to the creation of mathematical models, and one of the pro- mising ones, which makes it possible to most accurately analytically describe the process under consideration, is the construction of coupled field models, an example of which is thermome- chanical diffusion. The thermomechanical diffusion model is a description of the interaction of the fields of temperature, displacement, and concentrations. We consider an algorithm for sol- ving the unsteady dynamic problem of thermoelastic diffusion perturbations propagation in a multicomponent isotropic layer. One-dimensional physical and mechanical processes in the me- dium are described by the locally-equilibrium model, which includes the equations of elastic medium motion, heat transfer, and mass transfer. The unknown functions are sought in the inte- gral form, which is a convolution in time of the Green’s functions and the boundary conditions. The effects of cross diffusion and nonzero relaxation times are taken into account. To find the Green’s functions, the Laplace transform in time and Fourier series expansion in spatial coordi- nate are used. The analysis of the obtained Green functions is done. Test calculation is conducted.
Nowacki W. Dynamical problems of thermodiffusion in solids. Proc. Vib. Prob., 1974, vol. 15, pp. 105–128.
Sherief H.H., Hamza F.A., Saleh H. The theory of gener- alized thermoelastic diffusion. International Journal of En- gineering Science, 2004, vol. 42. pp. 591–608. https://doi.org/10.1016/j.ijengsci.2003.05.001
Indeitsev D.A., Semenov B.N., Sterlin M.D. The phenom- enon of localization of diffusion process in a dynamically deformed solid. Doklady Physics, 2012, vol. 57, no. 4, pp. 171–173. DOI: 10.1134/S1028335812040052
Kumar R., Chawla V. Green’s functions in orthotropic thermoelastic diffusion media. Engineering Analysis with Boundary Elements, 2012, vol. 36, pp. 1272–1277. https://doi.org/10.1016/j.enganabound.2012.02.017
Rambert G., Grandidier J.C., Aifantis E.C. On the direct interactions between heat transfer, mass transport and chem- ical processes within gradient elasticity. European Journal of Mechanics — A/Solids, 2007, vol. 26, pp. 68–87. https://doi.org/10.1016/j.euromechsol.2005.12.002
Shvets R.M. On the deformability of anisotropic viscoelas- tic bodies in the presence of thermodiffusion. Journal of Mathematical Science, 1999, vol. 97, no. 1, pp. 3830–3839. https://doi.org/10.1007/BF02364922
Olesiak Z.S., Pyryev Yu.A. A coupled quasi-stationary problem of thermodiffusion for an elastic cylinder. International Journal of Engineering Science, 1995, vol. 33, Is. 6, pp. 773–780. https://doi.org/10.1016/0020-7225(94) 00099-6
Shvets R.N., Yatskiv A.I. Construction of the solution of the mixed boundary-value problem of mechanothermodiffusion for layered bodies of canonical shape. Matematichni Metodi ta Fiziko-Mekhanichni Polya, 1992, no. 35, pp. 70–75.
Atwa S.Y., Egypt Z. Generalized thermoelastic diffusion with effect of fractional parameter on plane waves tempera- ture-dependent elastic medium. Journal of Materials and Chemical Engineering, 2013, vol. 1, Is. 2, pp. 55–74.
Deswal S., Kalkal K.K. Electromagneto-thermodiffusive problem for short times without energy dissipation. Journal of Engineering Physics and Thermophysics, 2013, vol. 86, no. 3, pp. 705–715. https://doi.org/10.1007/s10891-013- 0886-z
Kumar R., Devi S., Sharma V. Plane waves and funda- mental solution in a modified couple stress generalized thermoelastic with mass diffusion. Materials Physics and Mechanics, 2015, vol. 24, pp. 72–85. http://www.ipme.ru/e- journals/MPM/no_12415/MPM124_09_kumar.pdf
Levi G.Yu., Belyankova T.I. Some properties of trans- versely isotropic thermoelastic layer under initial stress. J. Phys.: Conf. Ser., 2019, vol. 1210, p. 012080. DOI: 10.1088/1742-6596/1210/1/012080
Levi G.Yu., Belyankova T.I. The influence of thermal con- tact between medium on the surface waves propagation in a prestressed thermoelastic layered half-space. J. Phys.: Conf. Ser., 2019, vol. 1260, p. 052018. DOI:10.1088/1742- 6596/1260/5/052018
Salama M.M., Kozae A.M., Elsafty M.A., Abelaziz S.S. A half-space problem in the theory of fractional order thermoelasticity with diffusion. International Journal of Scientific and Engineering Research, 2015, vol. 6, Is. 1, pp. 358–371. https://www.ijser.org/onlineResearchPaperVie- wer.aspx?A-half-space-problem-in-the-theory-of-fractional- order-thermoelasticity.pdf
Sherief H.H., El-Maghraby N.M. A thick plate problem in the theory of generalized thermoelastic diffusion. Int. J. Thermophys., 2009, vol. 30, pp. 2044–2057. https://doi.org/ 10.1007/s10765-009-0689-9
Aouadi M.A. Generalized thermoelastic diffusion problem for an infinitely long solid cylinder. Intern. J. Mathem. and Mathem. Sci., 2006, vol. 2006, pp. 1–15. DOI 10.1155/IJM- MS/2006/
El-Sayed A.M. A two-dimensional generalized thermoelas- tic diffusion problem for a half-space. Mathematics and Mechanics of Solids, 2016, vol. 21, no. 9, pp. 1045–1060. DOI: 10.1177/1081286514549877
Afram A.Y., Khader S.E. 2D problem for a half-space un- der the theory of fractional thermoelastic diffusion. Ameri- can Journal of Scientific and Industrial Research, 2015, vol. 6, no. 3, pp. 47–57. https://www.scihub.org/AJSIR/PDF/ 2015/3/AJSIR-6-3-47-57.pdf
Choudhary S., Deswal S. Mechanical loads on a general- ized thermoelastic medium with diffusion. Meccanica, 2010, vol. 45, pp. 401–413. https://doi.org/10.1007/s11012- 009-9260-9
Elhagary M.A. A two-dimensional generalized thermoelas- tic diffusion problem for a half-space subjected to harmoni- cally varying heating. Acta Mech., 2013, vol. 224, pp. 3057–3069. https://doi.org/10.1007/s00707-013-0902-6
Tripathi J.J., Kedar G.D., Deshmukh K.C. Two- dimensional generalized thermoelastic diffusion in a half- space under axisymmetric distributions. Acta Mech., 2015, vol. 226, pp. 3263–3274. https://doi.org/10.1007/s00707- 015-1383-6
Rambert G., Grandidier J.C., Cangemi L., Meimon Y. A modelling of the coupled thermodiffuso-elastic linear be- haviour. Application to explosive decompression of poly- mers. Oil and Gas Sci. Technol., 2003, vol. 58, pp. 571–591. https://ogst.ifpenergiesnouvelles.fr/articles/ogst/pdf/2003/05/rambert_v58n5.pdf
Shandly S., Ellis N.S., Randal T.J., Marshall J.M. Coup- led diffusion and stress by the finite element method. Appl. Math. Model., 1995, vol. 19, no. 2, pp. 87–94. https://doi.org/ 10.1016/0307-904X(94)00019-3
Zhang J., Li Y. A two-dimensional generalized electro- magnetothermoelastic diffusion problem for a rotating half space. Mathematical Problems in Engineering, 2014, vol. 2014, pp. 1–12. https://doi.org/10.1155/2014/964218
Davydov S.A., Zemskov A.V., Tarlakovskii D.V. Poverkhnostnye funktsii Grina v nestatsionarnykh zadachakh termomekhanodiffuzii [Surface Green’s function in non-stationary problems of thermomechanical diffusion]. Problemy prochnosti i plastichnosti — Problems of strenght and plasticity, 2017, vol. 79, no. 1, pp. 38–47. In Russ. https://doi.org/10.32326/1814-9146-2017-79-1-38-47
Vestyak A.V., Davydov S.A., Zemskov A.V., Tarlakovs- kii D.V. Nestatsionarnaya odnomernaya zadacha termo- uprugoj diffuzii dlya odnorodnykh mnogokomponentnykhsred s ploskimi granitsami [Unsteady one-dimensional prob- lem of thermoelastic diffusion for homogeneous multicom- ponent medium with plane boundaries]. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2018, vol. 160, no. 1, pp. 183–195. In Russ. https://kpfu.ru/portal/docs/F1671802777/160_1_phys_mat_ 18.pdf
Davydov S.A., Zemskov A.V., Tarlakovskii D.V. An elas- tic half-space under the action of one-dimensional time- dependent diffusion perturbations. Lobachevskii Journal of Mathematics, 2015, vol. 36, no. 4, pp. 503–509. DOI: 10.1134/S199508021504023X
Zemskov A.V., Tarlakovskii D.V. Two-dimensional non- stationary problem elastic for diffusion an isotropic one- component layer. Journal of Applied Mechanics and Tech- nical Physics, 2015, vol. 56, no. 6. pp. 1023–1030. DOI: 10.1134/S0021894415060127
Davydov S.A., Zemskov A.V. Rasprostranenie odnomer- nykh svyazannykh termouprugodiffuzionnykh vozmush- henij v izotropnom poluprostranstve s uchetom nenulevykh vremen relaksatsii [Propagation of monomeric coupled thermo-elasto-diffusion disturbances in isotropic semi-space taking into account non-zero relaxation time]. Trudy Kry- lovskogo gosudarstvennogo nauchnogo tsentra — Transac- tions of the Krylov State Research Centre, 2018, no. 52, pp. 144–150. In Russ. DOI: 10.24937/2542-2324-2018-2-S- I-144-150
Davydov S.A., Vestyak A.V., Zemskov A.V. Propagation of one-dimensional thermoelastodiffusive perturbations in a multicomponent layer. J. Phys.: Conf. Ser., 2019, vol. 1158, p. 022034. DOI: 10.1088/1742-6596/1158/2/022034
Davydov S.A., Zemskov A.V. Unsteady one-dimensional perturbations in multicomponent thermoelastic layer with cross-diffusion effect. J. Phys.: Conf. Ser., 2018, vol. 1129, p. 012009. DOI: 10.1088/1742-6596/1129/1/012009
Davydov S.A., Zemskov A.V., Akhmetova E.R. Thermoelas- tic diffusion multicomponent half-space under the effect of sur- face and bulk unsteady perturbations. Math. Comput. Appl., 2019, vol. 24, p. 26. https://doi.org/10.3390/mca 24010026
Olesiak Z.S. Problems of thermodiffusion of deformable solids. Materials Science, 1998, vol. 34, no. 3, pp. 297–303. https://doi.org/10.1007/BF02355619
Knyazeva A.G. Vvedenie v termodinamiku neobratimykh protsessov. Lektsii o modelyakh [Introduction to thermodyna- mics of irreversible processes. Lectures about models]. Tomsk: Publishing House «Ivan Fedorov», 2014. 172 p. In Russ.
Ryssel H., Ruge I. Ionenimplantation. Springer, 1978. 366 p. (Russ. ed.: Ryssel H., Ruge I. Ion implantation. Moscow: Nauka, 1983. 360 p.)
Polyanin A.D., Vyazmin A.V. Differential-difference heat- conduction and diffusion models and equations with a finite relaxation time. Theoretical Foundations of Chemical Engi- neering, 2013, vol. 47, no. 3, pp. 217–224. https://doi.org/ 10.1134/S0040579513030081
Aluminum Standards and Data. Metric Book. Standard by Aluminum Association, 2017. 250 p.
Grigoriev I.S., Meilikhov E.Z. Handbook of Physical Quantities. USA: CRC Press, 1996. 1568 p.
Szekeres A., Fekete B. Continuummechanics — Heat con- duction — Cognition. Periodica Polytechnica, Mechanical Engineering, 2015, vol. 59, no. 1, pp. 8–15. DOI: 10.3311/ PPme.7152
mai.ru — informational site of MAI Copyright © 2009-2024 by MAI |