Self-similar processes of heat transfer in a solid with axisymmetric heat source


Аuthors

Attetkov A. V.*, Volkov I. K.

Bauman Moscow State Technical University, MSTU, 5, bldg. 1, 2-nd Baumanskaya str., Moscow, 105005, Russia

*e-mail: fn2@bmstu.ru

Abstract

Self-similar (self-congruent) heat transfer processes occupy an important place in mathematical theory of solids thermal conductivity. The results of self-similar heat transfer processes in the isotropic solid under the impact of the instant flat or point (spherically symmetric) heat source on the object under study are well known. The specific features of the self-similar heat transfer process in a solid with spherical focus of various physical properties, i.e. spherical cavity filled with high-temperature gas with its fixed or moving according to the specified law boundary, and spherical inclusion or an inclusion in the form of a spherical layer absorbing penetrating radiation are known as well.

Despite the results achieved in the self-similar heat transfer processes in the analyzed system studying, a number of questions is still unanswered. It refers, in particular, to the issue of the possibility of self-similar process existence in the isotropic body with a heat source wielding axial symmetry.

The article formulates a problem of the temperature field determining of an isotropic solid with an axisymmetric heat source in the form of a circular cylinder. The mathematical model being analyzed of the heat transfer process in the system under study is based on the hypothesis that the heat source is thermally thin, i.e. on the realization of the «concentrated capacity» idea. It represents a mixed problem for a parabolic type second-order partial differential equation with a specific boundary condition actually accounting for the heat source presence in the system.

Using a self-similar substitution proposed in the article, a self-similar problem of heat transfer in an isotropic solid with a thermally thin heat source wielding axial symmetry was formulated and solved. A sufficient condition setting the possibility of a self-similar heat transfer process implementing in the system being analyzed has been identified. The obtained results were employed in a qualitative analysis of physical properties of the self-similar heat transfer process under study.

Keywords:

isotropic solid body, axisymmetric heat source, temperature field, self-similar solution

References

  1. Zel’dovich Ya.B., Rayzer Yu.P. Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavleniy [Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena]. Moscow: Nauka, 1966. 686 p. In Russ.

  2. Zel’dovich Ya.B., Kompaneets A.S. K teorii rasprostraneniya tepla pri teploprovodnosti, zavisyashchey ot temperatury [To the Theory of Heat Propagation with Temperature-Dependent Thermal Conductivity] // Sbornik, posvyashchennyy 70-letiyu akademika A.F. Ioffe [Collection dedicated to the 70th anniversary of academician A.F. Ioffe]. Moscow: USSR Academy of Sciences Publishing House, 1950. pp. 61‒71. In Russ.

  3. Samarskiy A.A., Galaktionov V.A., Kurdyumov S.P., Mikhaylov A.P. Rezhimy s obostreniem v zadachakh dlya kvazilineynykh parabolicheskikh uravneniy [Regimes with Aggravation in Problems for Quasilinear Parabolic Equations]. Moscow: Nauka, 1987. 478 p. In Russ.

  4. Volosevich P.P., Levanov E.I. Avtomodel’nye resheniya zadach gazovoy dinamiki i teploperenosa [Automodel Solutions to the Problems of Gas Dynamics and Heat Transfer]. Moscow: Publishing House of the Moscow Institute of Physics and Technology, 1997. 240 p. In Russ.

  5. Karslou G., Eger D. Teploprovodnost’ tverdykh tel [Thermal Conductivity of Solids]. Moscow: Nauka, 1964. 488 p. In Russ.

  6. Lykov A.V. Teoriya teploprovodnosti [The Theory of Heat Conduction]. Moscow: Vysshaya shkola, 1967. 600 p. In Russ.

  7. Kartashov E.M. Analiticheskie metody v teorii teploprovodnosti tverdykh tel [Analytical Methods in the Theory of Thermal Conductivity of Solids]. Moscow: Vysshaya shkola, 2001, 552 p. In Russ.

  8. Pudovkin M.A., Volkov I.K. Kraevye zadachi matematicheskoy teorii teploprovodnosti v prilozhenii k raschetam temperaturnykh poley v neftyanykh plastakh pri zavodnenii [Boundary Problems of the Mathematical Theory of Thermal Conductivity as Applied to Calculations of Temperature Fields in Oil Reservoirs during Waterflooding]. Kazan: Publishing House of the Kazan University, 1978. 188 p. In Russ.

  9. Kartashov E.M., Kudinov V.A. Analiticheskaya teoriya teploprovodnosti i prikladnoy termouprugosti [Analytic

  10. Theory of Thermal Conductivity and Applied Thermo-elasticity]. Moscow: URSS, 2012. 653 p. In Russ.

  11. Formalev V.F. Teploprovodnost’ anizotropnykh tel. Analiticheskie metody resheniya zadach [Thermal Conductivity of Anisotropic Bodies. Analytical Methods for Solving Problems]. Moscow: Fizmatlit, 2014. 312 p. In Russ.

  12. Attetkov A.V., Volkov I.K. O vozmozhnosti realizatsii rezhima termostatirovaniya granitsy sfericheskogo ochaga razogreva [On the Possibility of the Realization of Thermostating Mode of a Spherical Hot Spot Boundary] // Proceedings of the Russian Academy of Sciences. Power Engineering, 2016, no. 3, pp. 141‒147. In Russ.

  13. Attetkov A.V., Volkov I.K. Avtomodel’noe reshenie zadachi teploperenosa v tverdom tele so sfericheskim ochagom razogreva, obladayushchim termicheski tonkim pokrytiem [Self-Similar Solution of Heat Transport Problems in a Solid with a Spherical Hot Spot Having a Thermally Thin Coating] // Teplovye protsessy v tekhnike Thermal processes in engineering, 2016, vol. 8, no. 7, pp. 297‒300. In Russ.

  14. Attetkov A.V., Volkov I.K., Gaydaenko K.A. Avtomodel’noe reshenie zadachi teploperenosa v tverdom tele so sfericheskim ochagom razogreva, podvizhnaya granitsa kotorogo obladaet plenochnym pokrytiem [Self-Similar Solution of the Problem of Heat Transfer in a Solid with Spherical Hot Spot, which Moving Boundary has a Firm Coating] // Teplovye protsessy v tekhnike Thermal processes in engineering, 2017, vol. 9, no. 4, pp. 178‒183. In Russ.

  15. Attetkov A.V., Volkov I.K., Gaydaenko K.A. Avtomodel’nye protsessy teploperenosa v prozrachnom dlya izlucheniya tverdom tele s pogloshchayushchim vklyucheniem pri nalichii fazovykh prevrashcheniy v sisteme [Self-Similar Heat Transfer Processes in a Radiation-Transparent Solid Body Containing an Absorptive Inclusion with the System Featuring Phase Transitions] // Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie — Herald of the Bauman Moscow State Technical University. Series «Mechanical Engineering», 2019, no. 2. pp. 60‒70. In Russ.

  16. Attetkov A.V., Volkov I.K., Gaydaenko K.A. Avtomodel’nye protsessy teploperenosa v prozrachnom dlya izlucheniya tverdom tele s pogloshchayushchim vklyucheniem v vide sharovogo sloya [Self-Similar Heat Transfer Processes in a Transparent for Radiation Solid Body with Absorbing Inclusion in the Form of a Spherical Layer] // Teplovye protsessy v tekhnike Thermal processes in engineering, 2020, vol. 12, no. 5, pp. 212‒224. In Russ.

  17. Yanke E., Emde F., Lesh F. Spetsial’nye funktsii (Formuly, grafiki, tablitsy) [Special Functions (Formulas, Graphs, Tables)]. Moscow: Nauka, 1968. 344 p. In Russ.

  18. Gradshteyn I.S., Ryzhik I.M. Tablitsy integralov, summ, ryadov i proizvedeniy [Tables of integrals, sums, series, and products]. Moscow: Nauka, 1971. 1108 p. In Russ.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI