Thermal mode of a metal-composite hydrogen balloon being cooled while filling process


Аuthors

Zarubin V. S.1*, Zarubin S. V.1**, Zimin V. N.1***, Osadchiy Y. G.2****

1. Bauman Moscow State Technical University, MSTU, 5, bldg. 1, 2-nd Baumanskaya str., Moscow, 105005, Russia
2. ZAO NPP “MASHTEST”, Korolev, Moscow region, 141070, Russia

*e-mail: zarubin@bmstu.ru
**e-mail: sevlzaru@mail.ru
***e-mail: zimin@bmstu.ru
****e-mail: mashtest@mashtest.ru

Abstract

Hydrogen is an environmentally friendly energy carrier. Its consumption at power plants does not lead to harmful emissions into the atmosphere and is promising in many areas of technology, including various types of transport. With that, gaseous hydrogen application requires solving a number of technical problems due to its low density. They are associated with the need to create high-pressure balloons of significant volume and mass and ensure their filling until the regimented hydrogen density in such cylinders is reached. Intensive energy release occurs while metal-composite balloon filling with hydrogen. This energy removal through the layer reinforcing the balloon shell is insignificant due to low thermal conductivity of the composite. It leads to substantial hydrogen temperature rise while the cylinder filling. Even with the hydrogen precooling application to the temperature of 233 K, its temperature in the balloon while filling in the course of three to five minutes is close to the set limit of 358 K. Eventually, at reaching the regimented maximum hydrogen pressure of 70 MPa, its density and respectively mass in the filled balloon appears notably lower than the regimented one. To increase density and the mass of the hydrogen stored in the metal-composite balloon, its cooling can be performed directly in the balloon cavity, such as application of a coil placed in this cavity with water flowing in it. The hydrogen temperature herewith may be reduced to approximately the level of the average water temperature in the coil. This technique allows avoiding hydrogen precooling prior to its entering the balloon, and ensuring the hydrogen regimented density level achieving of 40 kg/m3 while the balloon filling at a maximum pressure of 70 MPa. It should be noted that placing the cooling system in the form of a coil and/or a set of tubes directly in the balloon cavity causes utterly uneven heating of the cylinder metal-composite shell. The wall temperature of the metal liner directly contacting with hydrogen significantly exceeds the temperature of the reinforcing layer of the composite in the first period of the balloon filling. This leads to a large difference in temperature deformations in the liner and the reinforcing layer. As the result, compressive stresses occur in the liner wall, exceeding the absolute value of the liner material yield stress. Such liner wall loading repetition at every balloon filling causes fatigue damages accumulation in its material, reducing the balloon service life. From the viewpoint of the balloon manufacturing technology and ease of its placement on a vehicle a cylindrical shape balloon has certain advantages. It is practical to place the cooling system in such balloon outside the balloon cavity in the form of the aggregate of longitudinal ducts, milled in the liner in the direction of the shell forming them. A similar system is employed for cooling the inner wall of the combustion chamber of a liquid propellant rocket engine. In the presence of fin assembly, the cooling surface significantly increases. This enhances additionally the efficiency of the cooling system and allows considering the possibility of employing a balloon of a larger capacity. Besides, no great liner and reinforcing layer temperature difference occurs, which downgrades the risk of fatigue damages accumulation in the liner material. The presented work substantiates the possibility of achieving the regimented hydrogen density in the balloon as the result of its filling by numerical modeling of the metal-composite hydrogen balloon of a cylindrical shape with the liner water-cooling.

Keywords:

metal-composite cylindrical balloon, balloon filling with hydrogen, hydrogen cooling in the balloon, mathematical model of the balloon thermal mode

References

  1. Kozlov S.I., Fateev V.N. Vodorodnaya energetika: sovremennoe sostoyanie, problemy, perspektivy (Hydrogen Energy: Current State, Problems, Prospects), in Velikhov E.P. (ed). Moscow, Gazprom VNIIGAZ, 2009, 520 p. In Russ.
  2. Fateev V.N., Alekseeva O.K., Korobtsev S.V., Seregina E.A., Fateeva T.V., Grigoriev A.S., Aliev A.Sh. Problemy akkumulirovaniya i khraneniya vodoroda. Kimya Problemleri (Chemical Problems), 2018, vol. 16, no. 4, pp. 453‒483. In Russ.
  3. Todorovic R. Hydrogen Storage Technologies for Transportation Application. Journal of Undergraduate Research, 2015, vol. 5, no. 1, pp. 56‒59.
  4. Zarubin V.S., Osadchii Ya.G. Chislennoe modelirovanie teplovogo rezhima metallokompozitnogo sharovogo ballona pri zapolnenii vodorodom. Transport na al’ternativnom toplive, 2021, no. 2(80), pp. 54‒62. In Russ.
  5. Standarty zapravki vodorodom. https://avtonov.info/standarty-zapravki-vodorodom/ (accessed 02.08.2021.) In Russ.
  6. Protokoly zapravki transportnyh sredstv gazoobraznym vodorodom, https: //saemobilus.sae.org/content/j2601-201407/ (accessed 08.02.2021.) In Russ.
  7. Zarubin V.S., Zarubin S.V., Osadchii Ya.G. Intensifikatsiya teplootvoda pri zapolnenii ballona gazoobraznym vodorodom, Teplovye protsessy v tekhnike, 2021, vol. 13, no. 6, pp. 242‒252. In Russ.
  8. Zarubin V.S., Zarubin S.V., Zimin V.N. Osadchii Ya.G. Chislennoe modelirovanie protsessa zapolneniya vodorodnogo ballona, okhlazhdaemogo zhidkim azotom, Teplovye processy v tehnike, 2021, vol. 13, no. 7, pp. 308‒317. In Russ.
  9. Gusenkov A.P., Kotov P.I. Dlitel’naya i neizotermicheskaya malociklovaya prochnost’ elementov konstrukcii (Long-term and non-isothermal low-cycle strength of structural elements), Moscow, Mashinostroenie, 1988, 264 p. In Russ.
  10. Kazantsev A.G. Malociklovaya ustalost’ pri slozhnom termomehanicheskom nagruzhenii (Low-cycle fatigue under complex thermomechanical loading), Moscow, MGTU im. N.E. Baumana, 2001, 248 p. In Russ.
  11. Makhutov N.A., Gadenin M.M. Kompleksnaya otsenka prochnosti, resursa, zhivuchesti i bezopasnosti mashin v slozhnykh usloviyakh nagruzheniya. Problemy mashinostroeniya i nadezhnosti mashin, 2020, no. 4, pp. 24–34. In Russ.
  12. Dobrovol’skii M.V. Zhidkostnye raketnye dvigateli. Osnovy proektirovaniya (Liquid propellant rocket engines. Design
  13. Basics), 3rd ed., in Jagodnikov D.A. (ed.) Moscow, MGTU im. N.E. Baumana, 2016, 460 p. In Russ.
  14. Kirillin V.A., Sychev V.V., Sheindlin A.E. Tehnicheskaya termodinamika (Technical thermodynamics), Moscow, Izd. dom MEI, 2016, 496 p. In Russ.
  15. Malkov M.P., Danilov I.B., Zel’dovich A.G., Fradkov A.V. Spravochnik po fiziko-tehnicheskim osnovam kriogeniki (Handbook of physical and technical fundamentals of cryogenics), 3rd ed., in Malkov M.P. (ed.), Moscow, Energoatomizdat, 1985, 432 p. In Russ.
  16. Gryazev M.V., Travin V.Ju., Bessmertnaya Yu.V. Zakatka gorloviny ballonov vysokogo davleniya, Izvestiya Tul’skogo gosudarstvennogo universiteta. Tehnicheskie nauki, 2015, no. 8-1, pp. 3‒8. In Russ.
  17. Mezhgosudarstvennyi standart. Alyuminii i splavy alyuminievye deformiruemye, GOST 4784-2-19 (Interstate standard. Aluminum and wrought aluminum alloys, State Standard 4784-2-19), Moscow, Standartinform, 2019, 31 p. In Russ.
  18. Grigor’yants A.G., Shiganov I.N., Misyurov A.I., Tret’yakov R.S. Lazernye additivnye tehnologii v mashinostroenii (Laser additive technologies in mechanical engineering), Moscow, MGTU im. N. E. Baumana, 2018, 278 p. In Russ.
  19. Zarubin V.S. Inzhenernye metody resheniya zadach teploprovodnosti (Engineering methods for solving problems of heat conduction), Moscow, Energoatomizdat, 1983, 328 p. In Russ.
  20. http: //thermalinfo.ru/svojstva-materialov/metally-i-splavy/ teplofizicheskie-svojstva-sostav-i-teploprovodnost-alyuminievyh-splavov. (accessed 08.02.2021). In Russ.
  21. Leont’ev A.I. (ed.) Teoriya teplomassoobmena (Theory of heat and mass transfer), 3-rd ed., Moscow, MGTU im. N.E. Baumana, 2018, 462 p. In Russ.
  22. Kutateladze S.S., Borishanskii V.M. Spravochnik po teploperedache (Heat Transfer Handbook). Moscow-Leningrad, Gosenergoizdat, 1958, 414 p. In Russ.
  23. Vodorod gazoobraznyi i vodorodnye smesi. GOST R 55091-2013/ ISO/TS 15869:2009. (Gaseous hydrogen and hydrogen mixtures. State Standard R 55091-2013/ISO/TS 15869:2009.). Moscow, Standartinform, 2014, 42 p. In Russ.
  24. Golovanov A.N., Kuzin A.Ya. Vosstanovlenie effektivnykh koeffitsientov teploprovodnosti ugleplastikovykh materialov v usloviyakh teplovogo nagruzheniya ot plazmennoi strui. Vestnik Tomskogo gosudarstvennogo universiteta. 2010, no. 4(12), pp. 83‒89. In Russ.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI