Thermophysical substantiation of the type of solvent of technical paraffin and the rational method of convective concentration of the resulting solution in order to create a food paraffin substance


Аuthors

Maryisheva M. A.*, Nugmanov A. K.**, Aleksanian I. Y.***, Maksimenko Y. A.****

Astrakhan State Technical University,

*e-mail: vjyuvfhbyf@mail.ru
**e-mail: albert909@yandex.ru
***e-mail: 16081960igor@gmail.com
****e-mail: amxs1@yandex.ru

Abstract

For film structures used for the production of biodegradable packaging materials and being hydrophilic in nature, their paraffinization will reduce the influence of external factors, primarily moisture. In the production of moisture-repellent compositions, much attention is paid to the quality of the final food paraffin, where one of its important safety indicators is the absence of carcinogenic aromatic hydrocarbons in it. The aim of the study was the development of an original waxing technology, by choosing a rational solvent for paraffin products from asphalt-resin-parffin deposits and regime and thermal parameters of convective concentration of the resulting solution for the production of edible paraffin. Unconditionally determining when choosing rational modes of convective preconcentration of a hexane solution continuously in contact with a moving film are the conditions for the exchange of thermal energy and matter at the boundary between the coolant and the surface of the packaging product. We note that from the physical and mathematical points of view, the conditions for such an exchange depend on the hydrodynamic regime of convective heat transfer and, in particular, on the heat transfer coefficient. As a result of the research, an original waxing technology was recommended, a rational solvent n-hexane was chosen for the studied paraffin, as well as regime and thermal parameters of the convective concentration of the resulting solution for the production of food paraffin.

Keywords:

hexane-paraffin mixture, water-repellent coating, paraffinization, food paraffin, asphalt-resin-paraffin deposits, convective concentration, heat transfer coefficient

References

  1. Pereverzev A.N., Bogdanov N.F., Roshchin Yu.N. Proizvodstvo parafinov (Paraffin production). Moscow: Khimiya, 1973. 224 p.
  2. Mineev B.P., Boligatova O.V. Dva vida parafina, vypadayushchego na podzemnom oborudovanii skvazhin v protsesse dobychi nefti. Neftepromyslovoe delo, 2004, no. 12, pp. 41−43.
  3. Petrushkina S.N., Popov A.I. Paraffin and its application / Sbornik studencheskikh nauchnykh statei po materialam 81-i regional’noi nauchno-prakticheskoi konferentsii (Collection of student scientific articles based on the materials of the 81st regional scientific and practical conference), «Molodezh’, nauka, tvorchestvo — 2016», («Youth, Science, Creativity — 2016»), Stavropol, April 18–28, 2016, pp. 357−358.
  4. Ovchinnikov S.V. Konvektivnyi teploobmen. metodiki inzhenernogo rascheta koeffitsienta konvektivnoi teplootdachi: ucheb.-metod. posobie dlya studentov fizicheskogo fakul’teta (Convective heat transfer. methods of engineering calculation of the coefficient of convective heat transfer, textbook-manual for students of the Faculty of Physics). Saratov, SGU imeni N.G. Chernyshevskogo, 2015. URL: http://elibrary.sgu.ru/uch_lit/1483.pdf
  5. Gerasimova E.V. Development of a methodology for evaluating the effectiveness and selection of solvents for asphalt-resinous and paraffin deposits on oilfield equipment, Ph.D. Ufa, 2009, 133 p.
  6. Ivanova I.K., Shits E.Yu. Kineticheskie issledovaniya protsessa rastvoreniya asfal’tosmoloparafinovykh otlozhenii v geksane i kompozitsiyakh na ego osnove. Neftyanoe khozyaistvo, 2012, no. 10, pp. 118−120.
  7. Ivanova I.K. Sravnenie kineticheskikh parametrov rastvoreniya v razlichnykh uglevodorodakh neftyanykh parafinov i promyslovykh asfal’to-smoloparafinovykh otlozhenii parafinovogo tipa. Fundamental’nye issledovaniya, 2014, no. 11 (5), pp. 1028−1031.
  8. Hexane-n 95% «Ch». URL: http://www.himmir.ru/ catalog/catalog-productsii/solvent/n-geksan.html (accessed: 17.12.2021).
  9. Savel’ev N.I. (ed). Spravochnoe posobie k kursovomu proektirovaniyu po protsessam i apparatam khimicheskoi tekhnologii khimiko-farmatsevticheskii fakul’tet Chuvashskogo gosudarstvennogo universiteta imeni I.N. Ul’yanova (Reference manual for course design on processes and apparatuses of chemical technology. FSBEI HE «Chuvash State University named after I.N. Ulyanova»). Cheboksary, 2016, 34 p.
  10. Physical properties of air. URL: http://thermalinfo.ru/svojstva-gazov/gazovye-smesi/fizicheskie-svojstva-vozduha-plotnost-vyazkost-teploemkost-entropiya (accessed: 02.07.2021).
  11. Koryagin A.A., Voskonyants V.G., Osinskii V.P., Mamistov V.V., Lamm E.L., Ezernitskii B.G., Tokarev V.V., Sokolovskaya L.F. Sushil’nye apparaty i ustanovki. Katalog (Dryers and installations, Catalog). Moscow, Tsentikhimneftemash, 1988.
  12. Ginzburg A.C. Osnovy teorii i tekhniki sushki pishchevykh produktov (Fundamentals of the theory and technology of food drying). Moscow: Pishchevaya promyshlennost’, 1975, 527 p.
  13. Lykov A.B. Teoriya sushki (Drying theory). Moscow: Energiya, 1968, 471 p.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI